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SUMMARY

Sunflower improvement by conventional breeding is severely restricted by
the availability of a rather limited gene pool owing to natural incompatibilities,
even between related species, and by the time scale of most breeding pro-
grams. Therefore, much attention has been directed recently to the newly
emerging and novel technologies of plant cell and molecular biology that pro-
vide a powerful means to supplement and complement the traditional methods
of plant improvement. The concept of DNA-based markers has revolutionized
our ability to directly access any part of the plant genome, and has led to new
opportunities such as map-based cloning and directed plant breeding. Efficient
regeneration of fertile plants from cultured cells and protoplats, combined with
novel methods of DNA delivery and selection of transformed cells, has resulted
in the production of transgenic sunflower. Agronomically useful genes, which
confer resistance to insect pests and pathogens, have been introduced. How-
ever, further molecular improvement of sunflower could be limited most by the
lack of our knowledge about, and access to, important and useful genes (e.g.,
those controlling multigenic traits like yield, and resistance to biotic and abi-
otic stresses). Therefore, high priority should be given to the development of
ultra high density (UHD) linkage maps and the development of new tools for
high-throughput genome and expression analyses.
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INTRODUCTION

The past decades has seen tremendous advances in plant biology, including the
biochemical dissection of developmental process, molecular assays of gene expres-
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sion and the development of stable transformed plants. The integration of rapidly
developing molecular techniques with conventional methods of plant breeding can
speed up the process of developing new cultivars with desirable characteristics. The
common sunflower (Helianthus annuus L.) is cultivated on every continent and is
one of the four major annual crops grown for edible oil: it is likely to be one of the
first beneficiaries of these technological advances (Knapp et al., 2000; Pugliesi et
al., 2000; Alibert et al., 2001; Gentzbittel et al., 2001).

New tools for breeding and genome manipulation in sunflower

Molecular biology over the past 30 years has greatly expanded knowledge about
the genetic architecture of living organism and the communication system by which
a gene or genotype exercises control over phenotype. Historically, plant breeders
have had to rely on phenotypic traits alone to breed for valuable traits. The develop-
ment of the molecular marker concept offers a significant opportunity for applying
linkage or “Mendelian” genetic approach to agriculturally important crops comple-
menting classical breeding techniques. Simple-sequence repeats (SSRs), amplified
fragment length polymorphisms (AFLPs), restriction fragment length polymor-
phisms (RFLPs), insertions-deletions (INDELs) and single nucleotide polymor-
phisms (SNPs) are just a few of the different molecular markers that are available
today and potentially meaningful for construction of ultra high density (UHD) link-
age map for facile positional cloning, expressed sequence mapping, trait mapping,
marker-assisted selection, studies on biodiversity and phylogenetic relationships.

The public DNA sequence databases for sunflower are limited. However in the
last years several leader groups have begun mass sequencing cDNA clones from
developing cDNA libraries (Knapp et al., 2000; Gentzbittel et al., 2001) and are
working toward producing database of specifically expressed sequence tags (ESTs)
from cDNA (Alibert et al., 2001), large inserted DNA and bacterial artificial chro-
mosome (BAC) libraries of cultivated and wild sunflowers (Knapp et al., 2000;
Gentzbittel et al., 2001; Horn et al., 2001). These resources should accelerate gene
discovery through data mining and cDNA micro-array analysis and create an access
for DNA marker development in sunflower (Alibert et al., 2001; Gentzbittel et al.,
2001; Tamborindeguy et al., 2001).

Advances in plant cell culture research have played an increasingly critical role
in the development of modern plant biotechnology. Widely used protocols for the
regeneration of plants from cultured cells of dicotyledonous species were already
available in the early 1980’s, when Agrobacterium-based methods for DNA delivery
and integration were developed, leading to the production of the first transgenic
plants in the 1983 (Fraley et al., 1983; Zambryski et al., 1983). Although in the
genus Helianthus several procedures to regenerate plants from tissue and cell cul-
tures have been established (Alibert et al., 1994), an effort to improve both somatic
hybridization and genetic transformation techniques is need (Pugliesi et al., 2000).
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Linkage maps and marker assisted selection (MAS)

Construction of a detailed genetic map will make available a precise but vast
amount of information that plant breeders can use to identify, manipulate, and
complement traits to their maximum advantage. The concept of using genetic mark-
ers to identify specific regions of the genome was established long ago using mor-
phological characters, but developments in molecular biology have increased the
repertoire of polymorphic assay procedures available. In sunflower, a major effort
has been devoted towards creating linkage maps, based on RFLP and AFLP mark-
ers (Berry et al., 1995, 1996; Gentzbittel et al., 1995, 1999; Jan et al., 1998). In
particular, AFLPs allowing the generation of a large number of data points in a short
time are especially suited for recurrent or donor parent analysis. The next step in
this field should be the generation in sunflower of linkage maps based on multi-
allelic SSR assays that could facilitate the transfer of map data to different popula-
tions and genotypes. 

One of the immediate benefits to plant breeding from genome mapping is using
DNA markers that are linked to single genes in order to select for important qualita-
tive traits. Moreover, DNA markers can be used to obtain information about: 1) the
number, effect, and chromosomal location of each gene affecting a trait; 2) effect of
multiple copies of individual genes (gene dosage); 3) interaction between/among
genes controlling a trait (epistasis); 4) whether individual genes affect more than
one trait (pleiotropy); and 5) stability of gene function in different environments
(Dudley, 1993; Paterson and Tanksley, 1997). 

In the course of plant improvement, plant breeders deal with several qualitative
traits; however, the most difficult problem facing breeders is the manipulation of
metric traits with complex inheritance. Many strategies are available which rely
upon the statistical analysis of field data to evaluate what has occurred on the geno-
typic level, but these inferences are often very imprecise as to the number of gene
involved and their mode of action. Tracking polygenes with genetic markers can be
traced back to the early 1920's when Sax (1923) reported the association of quanti-
tatively inherited seed size with monogenes controlling seed coat pigmentation and
pattern in bean (Dudley, 1993; Paterson and Tanksley, 1997). Effort to construct
high-density linkage maps of molecular genetic polymorphism (marker loci) is cur-
rently underway for sunflower (Jan et al., 1998; Gentzbittel et al., 1995, 1999).
Soon it should be possible to routinely score large numbers of such polymorphism
on many individuals in a population. Statistical associations between alleles at
molecular marker loci and alleles at quantitative trait loci (QTLs) can be used to
select indirectly, but with potentially very high accuracy, for DNA segments contain-
ing favorable QTL allele, effectively increasing the hereditability of economically
important agronomic characters such as yield, plant status and its components,
quality traits, resistance and environmental stresses (Dudley, 1993; Paterson and
Tanksley, 1997).



4 HELIA, 25, Nr. 36, p.p. 1-28, (2002)

Molecular markers provide a mechanism for applying linkage genetic tech-
niques to complex inheritance problems that almost reduces them to the level of
studying single gene traits, although both the experimental design and phenotypic
measurements are much more critical. QTLs can be followed in a segregating popu-
lation with the help of molecular markers. The selection for QTLs using genetic
markers can be effective if a significant association is found between the quantita-
tive trait and the genetic markers and using these associations to develop improved
lines or populations (MAS). QTL regions obtained from one population can later be
introgressed into other varieties, which may be more suited for specific environ-
ments (Dudley, 1993). These studies helped to bring forth the potential of exploiting
non-adapted and wild germplasm using backcrossing QTL analysis for the
enhancement of elite crop varieties (MAB: marker-assisted backcrossing). The
quick discovery and transfer of these QTLs from non-adapted to adapted germ-
plasm ultimately opens the door for the expansion of the genetic base of sunflower
(Vischi et al., 2001). Within the broad field of genomics, the QTL approach can be
further validated or supported by other areas such as transcriptional profiling,
physical mapping, and other functional genomics technologies (Alibert et al., 2001).

Genomics

Genomics can be described as “high-throughput genetics” or a synthesis of
three disciplines: molecular biology, automation and bioinformatics. Genomics
mainly involves the isolation of genes. Traditionally, this has operated via a “one
gene at a time” approach. In contrast, genomics adopts a global approach to gene
discovery, isolation (i.e., on a very large scale) and parallel assays of gene expres-
sion. Functional genomics include EST programs, expression analysis via high-den-
sity arrays, genome sequencing, promoter trapping, large-insert DNA libraries, BAC
libraries, physical mapping and positional cloning, automated DNA sequence
processing. The development of new tools for high-throughput genome and expres-
sion analyses is one of contemporary main goals of molecular biology in sunflower
(Gentzbittel et al., 2001; Horn et al., 2001). A sunflower BAC library corresponding
to 1.7 haploid genome equivalents has been constructed using the restorer line
RHA325 and pBeloBAC11 as vector for isolation and characterization of restorer
(Rf) genes (Horn et al., 2001). Moreover, the utility of a BAC library consisting of an
estimated 4-5-fold coverage of the sunflower genome has been recently evaluated by
screening for the presence of putative transmembrane receptor genes sharing epi-
dermis growth factor (EGF) and integrin-like domains (Fabre et al., 2001).

Somatic hybridization

Sunflower has been primarily selected for high yields, oil content and, where
necessary, adaptation to certain environmental conditions. This “selection pres-
sure” over the centuries has severely disrupted the co-evolutionary relationships
between plants and pathogens with the consequence that the cultivated sunflower
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has not retained the degree of resistance (pathogens and abiotic stress) exhibited by
their wild relatives (Škorić, 1992). Moreover, the wild ancestors of the cultivated
sunflower are potentially useful for modifications of oil quality (for example, reduc-
tion of saturated palmitic and stearic fatty acid) or modification of plant architec-
ture (e.g., floral architecture) that could allow the exploitation of new markets.

However, the use of interspecific hybridization has been limited by difficulties to
overcome the incompatibility barriers and to remove undesirable genes of the
donor species (Seiler, 1992). Advances in the application of cell fusion techniques
(Krasnyansky and Menczel, 1995; Wingender et al., 1996, Binsfeld et al.; 2000) can
offer an opportunity for the recombination of genomes and in transferring of chro-
mosome fragments from an alien species and/or genera to cultivated sunflower
(Binsfeld et al., 2000, 2001b; Varotto et al., 2001).

In Helianthus ssp., protoplasts can be easily isolated from hypocotyls (Lénée
and Chupeau, 1986; Moyne et al., 1988; Krasniansky et al., 1992; Krasniansky
and Menczel, 1993; Petitprez et al., 1995; Trabace et al., 1995; Wingender et al.,
1996; Laparra et al., 1997; Bolandi et al., 1999; Vallee et al., 1999; Varotto et al.,
2001), cotyledons (Fischer et al., 1992; Laparra et al., 1995) or mesophyll cells
(Guilley and Hanhe, 1989; Kirckes et al., 1991; Keller et al., 1994) of young seed-
lings. In addition, regenerated plants from protoplast-derived calli have been
obtained in several laboratories (Krasniansky and Menczel, 1993; Trabace et al.,
1995; Wingender et al., 1996). Protoplast fusion has resulted in cybrid/hybrid cal-
lus (Krasniansky and Menczel, 1995; Binsfeld et al., 2000) and intergeneric hybrid
plants have been obtained from fusion between chicory and H. annuus protoplasts
(Varotto et al., 2001). 

However, in the genus Helianthus the general lack of an efficient and reproduc-
ible plant regeneration system is still hampering exploitation of protoplast fusion
and gene transfer to protoplast. A number of studies have revealed the influence of
genotype in protoplast culture. In experiments conducted to identify the genetic fac-
tors controlling protoplast division, organogenesis and somatic embryogenesis, a
high hereditability has been shown in sunflower for the two protoplast division
parameters: total division per 100 protoplasts (TOTD) and asymmetric division per
100 protoplasts (ASYD) (Berrios et al., 2000). Twelve putative loci associated with
total division per 100 protoplasts were identified. Eleven QTLs were also detected
for asymmetric division per 100 protoplasts. The QTLs identified in three linkage
groups should be involved in cell division and in early events associated with cell
differentiation (Berrios et al., 2000).

As pointed out by Binsfeld et al. (2001a), symmetric and asymmetric somatic
hybridization via microprotoplast fusion or microinjection of chromosomes or
micronuclei represent an amenable method for the transfer of genes which are not
available as cloned DNA sequences or for transferring blocks of genes of agronomic
interest. Asymmetric somatic hybrid (ASH) plants have been obtained by PEG-
mediated mass fusion of microprotoplasts from perennial Helianthus species and
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hypocotyl protoplasts of sunflower (Binsfeld et al., 2000). The formation of micro-
nuclei in perennial sunflower cell cultures was induced, at early log phase, by addi-
tion of the herbicides amiprophosmethyl or oryzalin (Binsfeld et al., 2000). Sub-
diploid microprotoplasts were isolated by high-speed centrifugation and the small-
est enriched by sequential filtration through nylon sieves of decreasing pore size.
Fusion products were cultured and DNA analysis using RAPD markers revealed
that about the 50% of regenerated plants were asymmetric hybrids phenotypically
similar to H. annuus. Moreover, flow-cytometric analysis of nuclear DNA showed
that these plants had a higher DNA content than the receptor H. annuus, suggesting
that they represent addition lines (Binsfeld et al., 2000). Cytological investigation of
the metaphase cells of several cybrids revealed an addition of 2-8 extra chromo-
somes in these plants. Pollen viability of the ASH plants ranged from 79.2 to 95%
with a strong negative correlation to chromosome number, which varied between 34
and 42. Over 85% of the ASH meiocytes showed regular bivalent chromosome pair-
ing; however, several anomalies like anaphase bridges, laggard chromosomes, uni-
valent and multivalent pairing were reported (Binsfeld et al., 2001a). Molecular
investigation of ASH progeny using RAPD markers revealed the presence of donor
genotype markers in 68% of the offspring (Binsfeld et al., 2001a).

Male-sterile ASHs between Cichorium intybus and a sunflower male-sterile
cytoplasmic line have been obtained fusing mesophyll chicory protoplasts inacti-
vated with iodoacetic acid with hypocotyl sunflower protoplasts irradiated with
gamma-rays (Varotto et al., 2001). A cytological analysis of root-tip cells from regen-
erated plants indicated that most of them had 18 chromosomes, the same number
as chicory (Varotto et al., 2001). Through molecular analyses three plants were
identified as cytoplasmic asymmetric hybrids. The morphology of the cybrids
resembled the parental chicory phenotype, and at anthesis their anthers produced
fewer pollen grains, which could not germinate either in vitro or in situ. Cybrid
plants grown in the field produced seeds when free-pollination occurred (Varotto et
al., 2001).

Genetic transformation

The general requirements for a transformation system are: i) the target tissue
should be easily available; ii) it should regenerate with high frequency; iii) it should
be uniform in response. Progress in the sunflower transformation has been
restricted for many years by the limitation of available regeneration systems.
Although the recent development of efficient procedures for the successful culture
of somatic cells and protoplasts (Alibert at al., 1994; Trabace et al., 1995; Wingen-
der et al., 1996; Binsfeld et al., 2000), the most efficient regeneration systems are
direct, without an intervening callus phase (Power, 1987; Pugliesi et al., 1991; Alib-
ert et al., 1994). Prolonged culture in the non-differentiated state appear to be
incompatible with the selection of transformed calli able to plant regeneration
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(Laparra et al., 1995) or limited to particular genotypes (Everett et al., 1987; Rob-
inson and Everett, 1990).

Agrobacterium tumefaciens-mediated gene transfer

Sunflower is naturally susceptible to infection with Agrobacterium tumefaciens
(Braun, 1941) so that foreign genes have been introduced easily into sunflower
tumor cells through Agrobacterium (Murai et al., 1983; Matzke et al., 1984;
Helmer et al., 1984; Goldsbrough et al., 1986). Using a genotype that retained high
embryogenetic potential also after prolonged culture (Paterson and Everett, 1985),
Everett et al. (1987) first selected kanamycin-resistant calli capable of plant regen-
eration, after infection with an A. tumefaciens strain carrying the coding sequence
for neomycin phosphotransferase II (NPT II). This protocol of genetically stable
transformation of sunflower showed however, limited applications to other sun-
flower genotypes (Peerbolte and Dek, 1991). More recently, using hypocotyl explants
of the inbred line HA300B, stable transformation (0.1%) were obtained after co-cul-
tivation with A. tumefaciens carrying a gfp (green fluorescent protein) and nptII
genes (Muller et al., 2001).

From the procedures reported for other species, shoot apical meristems of sun-
flower were dissected from seeds and co-cultivated with an A. tumefaciens strain
harboring a binary vector carrying genes encoding β-glucuronidase (GUS) and NPT
II activity (Schrammeijer et al., 1990). Transformation of shoot meristem cells
occurred at low frequencies and chimeric expression of the two genes was observed
in a few transformed shoots. Although the low transformation frequency of the mer-
istematic cells limits the applicability of this procedure (Schrammeijer et al.,
1990), technical modifications, that involved secondary culture of nodal meristems
excised from transformed sector of Agrobacterium-infected intact meristems (Bid-
ney et al., 1998: WO 98/51806), allowed the production of transgenic Sclerotinia-
resistant plants of sunflower (Scelonge et al., 2000). In addition, it has been dem-
onstrated that the overexpression of the cytokinin-synthesizing gene ipt of A. tume-
faciens, improved the induction of adventitious shoots from embryonic axes,
increasing the regeneration efficiency and the rate of recovery of transgenic shoots
after Agrobacterium-mediated transformation (Molinier et al., 2001).

Despite of the high regenerative potential of sunflower immature embryos
(Bohorova et al., 1985; Alissa et al., 1986; Finer, 1987; Witrzens et al., 1988; Frey-
ssinet and Freyssinet, 1988; Wilcox-McCann et al., 1988; Espinasse and Lay, 1989;
Espinasse et al., 1989; Jeannin and Hahne, 1991), co-cultivation with A. tumefa-
ciens gives high frequencies of transformed calli but no plant regeneration (Voron-
ina et al., 1991) or regeneration of chimeric transformed shoots (Tassie et al.,
1991; Dek and Peerbolte, 1991; Peerbolte et al., 1992).

Another explant that gives relatively high frequency to regenerate fertile plants
is the cotyledon from ungerminated seeds and/or young plantlets (Pugliesi et al.,
1991; Chraibi et al., 1991, 1992; Ceriani et al., 1992; Sarrafi et al., 1996; Deglene
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et al., 1997; Fiore et al., 1997), but, unlike other sunflower tissues (Escandón and
Hahne, 1991), this organ is not easy to be transformed (Laparra et al., 1995). A
detailed analysis of the interaction of Agrobacterium with cotyledon explants
showed that transformation efficiency is critically dependent on the culture condi-
tions: in particular, the percentage of transformed explants is influenced by the
mineral and hormonal composition of the medium (Laparra et al., 1995). In addi-
tion, histological analyses of cotyledonary explants co-cultivated with Agrobacte-
rium showed that the transformed cotyledon cells are not necessarily competent for
regeneration (Damm et al., 1991; Laparra et al., 1995). Moreover, their regenera-
tion potentiality is swiftly lost whether during either in vivo development (Pugliesi
et al., 1991) or in vitro culture (Knittel et al., 1991). On the other hand, regenera-
tion from cotyledonary explants is direct and eventually, the induced callus shows
low organogenetic potentiality, so that the selection of eventually transformed com-
petent cells results very arduous. Thus, transformations of cotyledons were only
suitable for the production of transgenic callus and, occasionally, of shoots with chi-
meric expression of transgenes (Biasini et al., 1992; Pugliesi et al., 2000).

Although in the genus Helianthus leaves explants are not able for prominent
adventitious regeneration (Pugliesi et al., 1993a; Bianchi et al., 1999) a remarkable
embryogenic potential is displayed by leaf explants of regenerated plants of the
interspecific hybrid H. annuus x H. tuberosus subjected to a second culture cycle in
vitro (Pugliesi et al., 1993a; Fambrini et al., 1996, 1997). This morphogenetic com-
petence allowed the stable genetic transformation by co-cultivation of leaf disk
explants with A.  tumefaciens carrying the nptII and the uidA genes (Pugliesi et al.,
1993b) but the polyploid nature of the hybrid confine the applicability of this trans-
formation method.

Recently, a simple A. tumefaciens-mediated transformation system has been
developed to eliminate the in vitro regeneration component from the transformation
protocol (Rao and Rohini, 1999). Two-day-old seedlings with one cotyledon
detached were infected with an A. tumefaciens strain harboring uidA and nptII
genes. Following co-cultivation, seedlings, grown aseptically for 5 day on a growth
regulator-free basal medium, were screened for transient GUS expression and the
shoot portions of the putative transformants were utilized for propagation as trans-
genic plants. The excised shoots that initiated roots following selection were subse-
quently transferred to a glasshouse. This transformation technique allowed rapid
generation of up to 2% phenotypically normal fertile plants containing functional
transgenes (Raho and Rohini, 1999).

Direct gene transfer to protoplast

Protoplast-transformation has been obtained by DNA uptake mediated by
chemical treatments (Moyne et al., 1988; Kirches et al., 1991; Laparra et al., 1995)
or electroporation (Burrus et al., 1990; Kirches et al., 1991; Laparra et al., 1995;
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Burrus et al., 1996a); nevertheless, achievement of fertile transformed plants was
never reported.

The crucial point in the chemical transformation is the treatment of the proto-
plasts suspended in the medium containing DNA and PEG that promotes DNA
uptake. In sunflower protoplasts, the best results were obtained with PEG 6000
(Moyne et al., 1989; Laparra et al., 1995). The PEG method allowed the recovery of
transformed sunflower calli at the frequency of 4 calli for 106 treated protoplasts
(Moyne et al., 1989). However, after 6 months of culture, calli degenerated and
failed to develop into mature embryos and/or shoots (Moyne et al., 1989).

In electroporation protocols, freshly isolated protoplasts are suspended in a
salt solution with a particular electric resistance that produces transient pores in
the plasma membrane, facilitating penetration of macromolecules into the proto-
plast. In sunflower, application of this technique was performed by Burrus et al.
(1990) using a DNA construct carrying uidA and nptII genes. However, no trans-
genic plants were regenerated, probably due to the poor regenerative potential of
the genotype used (Burrus, 1991: cited in Alibert et al., 1994; Laparra et al., 1995).
In any case, regeneration from protoplast of H. annuus is tightly genotype depend-
ent and fertile plants have been obtained only at low frequency (Schmitz and
Schnabl, 1989; Burrus et al., 1991; Chanabé et al., 1991; Trabace et al., 1995;
Wingender et al., 1996).

Particle bombardment

In the first report on the introduction of a foreign gene by particle bombard-
ment of sunflower meristem explants, the regenerated plants showed GUS express-
ing sectors, indicating that chimeric plants had been produced (Bidney, 1990).
Transient expression of the uidA gene has been induced in sunflower cotyledonary
explants and immature zygotic embryos at different developmental stages after
microprojectile bombardment (Hunold et al., 1995). Small embryos of approxi-
mately 1.5-2.0 mm in diameter were the most suitable for efficient transient GUS
expression (Laparra et al., 1995; Hunold et al., 1995) and multiple shoot forma-
tion (Hunold et al., 1995); but, the conversion rate of transient to stable transfor-
mation was shown to be very low (Hunold et al., 1995). The limited success of DNA
transfer into sunflower cotyledons by microprojectile bombardment is likely due to
the strong cuticle (Hunold et al., 1995).

Combination of particle bombardment with A. tumefaciens co-cultivation

Although the biolistic technique allows only transient expression of foreign gene
(Hunold et al., 1995) and/or selection of transformed chimeric shoots (Bidney,
1990; Hunold et al., 1995; Burrus et al., 1996b), its application has been decisive
in sunflower transformation. With the combination of bombardment of shoot apical
meristems or embryonic axes of immature embryos and the successive co-cultiva-
tion of the treated explants with A. tumefaciens strains, fertile transgenic plants
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have been obtained in several laboratories (Malone-Schoneberg et al., 1991, 1994;
Bidney et al., 1992a; Knittel et al., 1994; Lucas et al., 2000; Hewezi et al., 2001).
Microprojectiles (Bidney et al., 1992b; Malone-Schoneberg et al., 1994; Knittel et
al., 1994; Lucas et al., 2000; Hewezi et al., 2001) or glass beads (Grayburn and
Vick, 1995) were used as a wounding mechanism to enhance Agrobacterium trans-
formation frequencies. Chimeric transgenic plants were recovered after the screen-
ing of putatively transformed cells with a short (4 days) (Grayburn and Vick, 1995)
or long (2-5 weeks) (Malone-Schoneberg et al., 1994) incubation on selective
medium. Solid transformants were recovered after self pollination (Malone-
Schoneberg et al., 1994; Grayburn and Vick, 1995; Lucas et al., 2000).

The chimeric nature of primary transformants is the major complication of
these protocols. The applications of selective cycles on medium containing kanamy-
cin allow the enrichment in transformed cells: a considerable number of shoots iso-
lated at the end of three cycles were solid transformants (Knittel et al., 1994). Other
problems are the occurrence of premature flowering, and the long time of selection
on medium containing cytokinins that inhibit rooting of regenerated and/or micro-
progated shoots (Lupi et al., 1987; Cavallini and Lupi, 1992). Thus, the survival of
transgenic plants and the number of filled achenes can be greatly improved by in
vitro grafting (Malone-Schoneberg et al., 1994; Grayburn and Vick, 1995). 

Field performances of transgenic plants

Field testings are necessary to determine that yield and other agronomic char-
acteristics have been maintained in transgenic plants and to test the expression of
the introduced gene under field conditions. The heritable changes in both quantita-
tive and qualitative traits, described in regenerated plants of H. annuus (Pugliesi et
al., 1991; Natali et al., 1995), could have detrimental effects on transformation
experiments. Genetic transformation in sunflower is documented (Everett et al.,
1987; Malone-Schoneberg et al., 1994; Knittel et al., 1994; Graiburn and Vick,
1995) and the transgenic phenotypes were inherited in expected Mendelian segrega-
tion ratios confirming that they were stably transformed (Everett et al., 1987; Knit-
tel et al., 1994; Malone-Schoneberg et al., 1994, Lucas et al., 2000; Muller et al.,
2001). However, many problems on Agrobacterium/sunflower cell interaction are
largely unsolved, including plant regeneration, Agrobacterium virulence induction,
T-DNA activation, transfer and integration: these aspects make extremely arduous
to establish the optimal conditions for a reliable transformation method. Thus, field
performance tests of transformants are limited indicating that further improve-
ments of the sunflower transformation protocols are necessary to obtain enough
materials for field evaluation.

Recently, Bazzalo et al. (2000) have reported the field screening for resistance
to Sclerotinia of transgenic inbred lines and hybrids containing the wheat oxalate
oxidase gene, ascertaining that the transgenic genotypes were more resistant to the
pathogen than non-transgenic isolines and corresponding isogenic hybrids. In addi-
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tion, transgenic plants for the Cry1F gene of Bacillus turingiensis, obtained using a
modified meristem culture protocol (Bidney et al., 1992b) have been evaluated for
resistance to two insect pests: Rachiplusia na and Spilosoma virginica that have a
significant economic impact on the Argentina sunflower production. Bt material
showed to be resistant to Rachiplusia na, even at high levels of attack (Pozzi et al.,
2000).

SOME APPLICATIONS OF BIOTECHNOLOGIES IN SUNFLOWER

Disease resistance

Developing methods for diagnosis of plant pathogens, as well as preventing or
limiting infection by plant pathogens and pests have clear relevance to sustainable
and reduced input systems and the quality of products for several market sectors.
Limiting infection is especially important with the global desire to use benign prac-
tices that are more environmentally friendly. The primary objectives should be
direct to: 1) elucidate the genetic, physiological and biochemical events underlying
host-pathogen interactions in compatible and incompatible responses (Roeckel-
Drevet et al., 1997; Virányi and Walcz, 2000); 2) determine the pathways involved
in early recognition by plants of pathogens or pests and to develop strategies to pro-
duce germplasm with enhanced disease resistance (Vear and Touvieille de
Labrouhe, 1988; Rashid, 1993; Mouzeyar et al., 1994; Langar et al., 2000a,
2000b; Maširević, 2000); 3) develop genetic, physical and transcriptional maps of
the genomes of important prokaryotic and eukaryotic sunflower pathogens and
pests to better understand the basis of pathogenicity and host range; 4) develop a
conceptual understanding of the aetiology, epidemiology and population biology of
the target pathogens, and to develop the necessary diagnostics  (Viguie et al., 1999;
Chaillou et al., 2000; Delos et al., 2000; Tourvieille de Labrouhe, 2000).

During the last decade, many important results have been obtained concerning
the molecular aspects of disease resistance to several fungal disease, both on the
localization of genomic regions involved in this resistance and on some genes and
proteins accumulating following infection (Mouzeyar et al., 1995; Roeckel-Drevet et
al., 1996; Besnard et al., 1997; Vear et al., 1997; Gentzbittel et al., 1998; Mazeyrat
et al., 1998, 1999; Mestries et al., 1998). The discovery of novel genes and the
understanding of the complete molecular mechanisms leading resistance of sun-
flower require the merging or the exchange of the tools available worldwide. To
speed up the localization and the cloning of resistance genes, molecular probes
(Gentzbittel et al., 1998; Brahm et al., 1999) and libraries (Gentzbittel et al., 1995;
Berry et al., 1995; Jan et al., 1998) are probably the most important that need to
be exchanged between scientific teams. It is noteworthy that almost all the plant
resistance genes have been cloned using either transposon tagging or map-based
cloning strategies (chromosome walking or chromosomes landing). Transposon



12 HELIA, 25, Nr. 36, p.p. 1-28, (2002)

tagging often involves the maize Dissociation (Ds) element and unfortunately this
technique is not applicable or available in sunflowers. However, major genes for
resistance to insect and pathogens or also related to morpho-agronomical and
physiological characters (e.g., drought tolerance) can be tagged with tightly linked
molecular markers will allow to establish the presence of these genes by assaying
plants for the markers (Gentzbittel et al., 1998; Brahm et al., 1999; Panković et
al., 2000, 2001; Vasile et al., 2001) and to clone genes, about which only the effect
on phenotype is known (Weeden, 1991). In Helianthus ssp. the construction of
RFLP and AFLP linkage maps (Berry et al., 1995; Jan et al., 1998; Gentzbittel et
al., 1999) has allowed the identification and isolation of resistance genes (Mouzeyar
et al., 1995; Roeckel-Drevet et al., 1996; Besnard et al., 1997; Vear et al., 1997;
Gentzbittel et al., 1998; Mazeyrat et al., 1998; Mestries  et al., 1998) giving the
opportunity of the incorporation of these traits in cultivated sunflower (Scelonge et
al., 2000).

Two RAPD markers linked to the RAdv gene conferring resistance to most of the
pathotype of Puccinia helianthi have been identified (Lawson et al., 1998). Moreo-
ver, two sequence-specific markers (SCAR), developed from the sequences of the
RAPD marker (Lawson et al., 1998), could be used in MAS programs and to clon-
ing the RAdv gene.

Seven QTLs for resistance to Phoma macdonaldii, a casual agent of black stem
disease, has been defined using a collection of Recombination Inbred Lines (RILs)
(Alibert et al., 2001). These QTLs justified 92% of the phenotypic variability of the
trait.

To clone genes giving resistance to Plasmopara halstedii, many molecular
markers have now been identified and mapped to the genomic region containing the
major locus Pl6 for resistance to all the known races of P. halstedii (Mouzeyar et
al., 1995; Roeckel-Drevet et al., 1996; Vear et al., 1997). In addition PCR based
markers for Pl2, Pl6 and Plarg useful for MAS were recently reported (Brahm et
al., 1998, 1999, 2000). Pl6 locus seems more complex than expected and may con-
tain more than one Pl gene (Mouzeyar, 2000). The screening of a sunflower large
insert library could allow the identification of different alleles conferring resistance
to five race of P. halstedii. Using a PCR-based methods Mouzeyar et al. (2000) have
cloned some cDNA and genomic fragment, from an inbred line of sunflower, con-
taining the Pl1 locus. Sequence comparison of these clones has showed that Pl
genes belong probably to the large TIR-NBS-LRR class of plant resistance gene. In
the incompatible interaction, sunflower seedlings develop a hypersensitive-like
reaction within the hypocotyl (Mazeyrat et al., 1999). It has been suggested that the
induction of chitinase transcripts following infection of seedlings by P. halstedii
occurs at the transcriptional level (Mazeyrat et al., 1999). Different methods such
as differential screening or subtractive libraries can be used to cloning these
defense-related genes (Mazeyrat et al., 1998; Klein et al., 2001).
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In the temperate regions of the world, white rot caused by the polifagous fungus
Sclerotinia sclerotiorum (Lib.) de Bary is considered the most serious disease,
since it is widespread, persists for many years in the soil, and has a very wide host
range (Maširević and Gulya, 1992). It can attack many parts of the plant: roots,
base of the stem and capitulum (Bazzalo et al., 1991; Castaño et al., 1992, 1993).

To date, complete resistance to Sclerotinia is not available in cultivated sun-
flower, but only in its wild relatives (Škorić and Rajčan, 1992; Cerboncini et al.,
2001). Moreover, in each part of the plant the level of this poligenic trait may be
quite different (Degener et al., 1999a, 1999b). Analyses of QTLs associated with
resistance to exstension of S. sclerotiorum mycelium on sunflower capitula and
leaves using molecular marker have been reported (Mestries et al., 1998; Hahn et
al., 2001). Seventy-three RFLP probes were used to construct a genetic map where
four QTL loci were demonstrated for leaf resistance and two for capitulum resist-
ance. One of these zones appears to be involved in resistance to both type of S. scle-
rotiorum attack while the others appear specific for resistance of one part of the
plant.

Actually the classical breeding utilize costly and time-consuming artificial infec-
tion as resistance tests, thus it would be very useful to find early techniques for
screening genotypes and to find markers of different resistance mechanisms which
would make it possible either to reduce the number of test or to increase the effi-
ciency of these carried out (Mestries et al., 1998). Recently, it has been proved that
the exposure of sunflower to toxic metabolites of Sclerotinia can result in plant wilt-
ing, tissue injury, increase in the plant tissue of the levels of oxalic acid and shiki-
mate dehydrogenase (SKDH) enzymatic activity and synthesis of new proteins (PR)
(Tamhasebi Enferadi et al., 1998a, 1998b, 2000). The increase in SKDH enzymatic
activity, related to the biosynthesis of shikimic acid, seems involved in the synthesis
of lignin for cell wall, a typical mechanical reaction defense against fungal attack
(Carrera and Poverene, 1995). Sclerotinia secretes toxins, including oxalic acid
(Callahan and Rowe, 1991) which, acting as a toxin, causes pH variations, stem
lesions and complete and irreversible plant wilting (Marciano et al., 1983). The
reaction of sunflower genotypes to oxalic acid treatment is similar to their reaction
to Sclerotinia attack in the field. A wheat oxalate oxidase gene (mentioned earlier)
was incorporated into a transformation cassette, driven by the SCP1 promoter (Lu
et al., 2000), used to transform an inbred restorer line of sunflower with low Scle-
rotinia head rot resistance (Bazzalo et al., 2000; Scelonge et al., 2000). In addition,
oxalic acid has been used as a screening agent for Sclerotinia resistance in labora-
tory conditions (Vasić et al., 1999, 2001).

Drought resistance

During the last 20 years, crops of sunflowers have extended in EU Mediterra-
nean area due to its capacity to adapt to dry environments. Although sunflower was
moderately tolerant of drought, production is strongly influenced by the presence of
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water stress, which is found fairly regularly. In fact, drought is a permanent feature
in many developing areas and may also periodically influence the economy of the
Europe and USA. The late stress is typical of Mediterranean environments and the
crop during the flowering-grain filling period is affected by drought during the
development of the dry season. The threats from the trend in the climate render
this property ever more important. Unfortunately, useful knowledge concerning the
improvement of the species to environments with trophic, especially water; limita-
tions are still scarce and fragmentary. In particular, genetic improvement for
drought resistance has been limited, by the lack of simple screening technologies to
assess the drought tolerance of genotypes, obliging the breeders to utilize methods
involving selection for yield and its stability, with repetitions over many locations
and years, which are expensive, laborious and time consuming (Blum, 1987). Dur-
ing the last few years many morpho-physiological characteristics related to yield
under limited water availability have been identified (Baldini et al., 1992, 1993;
Acevedo and Fereres, 1993; Panković et al., 1998, 1999), but in most cases no cor-
relation has been found between these indexes and an increase in yield (Schonfeld
et al., 1988; Sloane et al., 1990). This may be due to the fact that all these indexes
have been generated from measurements made on single tissues or organs during a
particular phenological stage, whereas achene yield under drought conditions
springs from very complex mechanisms, deriving from genotype-environment inter-
actions that develop throughout the whole plant cycle.

In order to analyze germplasm in relation also with agronomic and physiologi-
cal observations on population offspring in field or controlled conditions, several
molecular markers could be used either for SNP or for general mapping. SNP will
help to detect polymorphism hidden until now but potentially important in Helian-
thus bio-diversity and candidate genes functional properties. This will result in a
candidate gene approach combined with QTLs mapping for the exploitation of
desirable traits issued from yet under-exploited germplasms either from cultivated
(Panković et al., 2000; Hervé et al., 2001) than wild Helianthus species (e.g., Heli-
anthus argophyllus) crossed with sunflower. Introgression of traits conferring
higher drought tolerance would therefore lead to an improvement of this crop into a
more economically optimized and ecologically well-adapted system for the produc-
tion of renewable resources.

Oil quality

Traditional sunflower oil has been the major polyunsaturated oil used for many
years in human nutrition to replace saturated fat, in an attempt to reduce cardio-
vascular diseases (Carmena et al., 1996). The quality of sunflower oil is generally
associated to the relative content in linoleic fatty acid. However, it has been demon-
strated that diets including high consumption of monounsaturated oils are as effec-
tive as those rich in polyunsaturated oil in lowering cholesterol (LDL-C), but in
contrast to the effect of polyunsaturated diets, the monounsaturated diets do not
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lower HDL-C (Delplanque, 2000). Thus the development of new selected sunflower
seeds producing enriched in oleic acid (reviewed in Lacombe and Bervillé, 2000) at
the expense of linoleic acid has made sunflower oils highly competitive compared
with other traditional predominant monounsaturated oils (Delplanque, 2000).
Moreover, the present trend in human diet is to decrease the consumption of the
saturated palmitic and stearic fatty acid. To identify sunflower germplam with
reduced saturated fatty acid composition, a total of 884 cultivated sunflower acces-
sions has been screened (Vick et al., 2001). The genetic analysis of selected plants
with low saturated fatty acid content indicates that the trait is dominant (Vick et al.,
2001). In addition, preliminary data suggested that the content of these fatty acids
can be reduced introducing genes from wild perennial progenitors (e.g., H. gigan-
teus) into cultivated sunflower (Seiler, 2001).

The increase of alternative fatty acid contents in the oil has stimulated new mar-
kets, thus providing new interest in growing sunflower (Gielen, 1992). Mutants
affecting seed oil fatty acid composition are of great value leading to novel oil com-
position (Lacombe and Bervillé, 2000). In sunflower several different mutants have
been isolated using chemical and physical mutagens (Soldatov, 1976; Ivanov and
Ivanov, 1985; Garcés et al., 1992; Osorio et al., 1995; Miller and Vick, 1999; Peréz-
Vich et al., 1999a, 1999b, 2000a), however, little is known about the molecular
nature of these mutations. Nevertheless, candidate genes from the fatty acids bio-
synthetic pathway have been recently mapped using molecular markers
(Hongtrakul et al., 1998; Lacombe et al., 2000; Peréz-Vich et al., 2000b; Lacombe
and Bervillé, 2001) that can serve as starting point for chromosome walking or
chromosome landing to clone the corresponding gene. The modification by genetic
transformation of fatty acids composition of sunflower seed oil can be also pros-
pected in a near future.

Seed storage protein

Sunflower seeds can also provide a source of proteins in the diets of livestock.
Unfortunately, the values of sunflower proteins are lowered by their unbalanced
amino acid compositions. The protein of sunflower is hardly lacking in lysine, and
has a low intestinal digestibility due to the presence of phenolic compounds (chloro-
genic and caffeic acids). The in vitro mutagenesis of seed storage protein genes to
increase the content of high valuable amino acids and/or the introduction of heterol-
ogous genes encoding proteins containing high lysine can allow to improve the
nutritive value of the sunflower seeds.

Phylogenetic studies

The genus Helianthus belongs to the Compositae (Asteraceae) family and
includes about 100 species (Watson, 1929), the majority of which are native to
North America. The genus provides two food plants, H. annuus, the sunflower, and
H. tuberosus, the topinambour or Jerusalem artichoke. Several varieties of H.
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annuus, as well as other species of the genus, are sometimes cultivated as orna-
mentals (Rogers et al., 1982).

Molecular phylogenetic studies have contributed significantly to our under-
standing of the phylogenetic relationships of Helianthus, although several problems
remain unresolved. The availability of molecular data has made it possible to refine
with confidence the circumscription of Helianthus, the relationships of Helianthus
to other member of subtribe Helianthinae and the divergence within the genus
(Schilling and Panero, 1996; Schilling, 1997, 2000). However, the results obtained
from molecular data set based on restriction site analysis of chloroplast DNA
(cpDNA) (Schilling and Jansen, 1989; Schilling, 1997) and data set from sequenc-
ing of the nuclear ribosomal internal transcribed spacer region (ITS) (Schilling and
Panero, 1996) are mostly but not entirely congruent. Thus, it is needed to identify
molecular markers that show the appropriate, high level of variation that will be
required to resolve fully relationships within Helianthus, overall for the polyploid
species (Schilling, 2000).

Genetic variability

Although sunflower is an important crop species, present knowledge of its basic
genetics lags behind other genetically well-known species. Methods have been devel-
oped for the generation of novel mutants in crop species. In sunflower, mutants
have been induced by a variety of chemical mutagens and ionizing/non-ionizing
radiation (Wallace and Habermann, 1959; Soldatov, 1976; Ivanov and Ivanov, 1985;
Garcés et al., 1992; Osorio et al., 1995; Miller and Vick, 1999; Peréz-Vich et al.,
1999a, 1999b; Triboush et al., 1999). The recent progress on in vitro tissue culture
and genetic transformation could make sunflower a suitable candidate for the use
of alternative mechanisms for genome modifications and plant breeding applica-
tions.

The first relates the exploitation of the genetic variability induced by in vitro tis-
sue culture (Pugliesi et al., 1991; Roseland et al., 1991; Encheva et al., 1993;
2001; Fambrini et al., 1993, 2001; Barotti et al., 1995; Fambrini and Pugliesi,
1996). Moreover, since plant tissue culture causes alterations in DNA methylation,
this mutagenic system may be unique and perhaps will generate some novel types of
variants. Interestingly, the activation of transposable elements has been correlated
with hypomethylation of certain DNA sequences (Fedoroff et al., 1989; Dennis and
Brettel, 1990), and active transposable elements have been induced via the tissue
culture process (Peschke et al., 1987).

Other methods include the insertion of transposable elements to induce stable
and unstable mutants forms and the use of antisense RNA to down-regulate the
gene expression (Schuch, 1990). Therefore, these methods could also allow the
identification of previously unknown biochemical functions of plant genes.

Transcription factors

The developmental processes of higher plants are thus complex that might
appear intractable, even to the powerful investigative tools of modern molecular
biology, but remarkably good progress toward understanding them has been made
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in recent years in model species (Goodrich et al., 1997). Genes that control the
ontogeny are often homeotic or heterochronic genes, and member of a limited
number of multigene families (homeobox genes, MADS-box genes) which encode
transcription factors (Ma, 1998; Percy et al., 1998; Reiser et al., 2000). The isola-
tion and characterization of these genes, also in sunflower, might add news insight
in important developmental process such as pattern formation, cellular differentia-
tion and organogenesis (Meyerowitz, 1997; McSteen and Hake, 1998).
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PAPEL DE LOS METODOS BIOTECNOLOGICOS EN LA 
CREACION DEL GIRASOL EN EL MUNDO

RESUMEN

La mejora del girasol con los metodos de la seleccion convencional es
considerablemente limitada por la base genetica estrecha, incompatibilidad
natural aun entre la especies semejantes, y los limites temporales del pro-
grama de selleccion. Por eso, se presta grande atencion a nuevas tecnologias de
la biologia celular y molecular, que representan las armas poderosas que com-
pletan los metodos tradicionales de la seleccion de plantas. El concepto del
marcador DNK ha aumentado considerablemente nuestra capacidad para el
acceso directo a qualquier parte del genoma vegetal, lo que presenta nuevas
posibilidades como clonar a base de las mapas de genes y la seleccion de plan-
tas dirigida. La regeneracion eficaz de plantas fertiles a partir del cultivo de
celula y protoplasto en combinacion con nuevos metodos de introduccion de
DNK y de seleccion de las celulas transformadas, llevo a la creacion de las
plantas de girasol transgenicas. En el girasol cultivado fueron introducidos los
genes agronomicamente utiles que aseguran la resistencia a los insectos y
patogenos. Entretanto, la mejora ulterior del girasol al nivel molecular puede
ser limitada por la ignorancia o la imposibilidad del acceso a los genes utiles
(por ejemplo, a los genes que controlan los poligenes de las propiedades
siendo el rendimiento y  la resistencia a los efectos bioticos y abioticos). Por
eso, la prioridad es dada al desarrollo de mapas detalladas de los genes enla-
zados y a  la creacion de nuevos instrumentos para analisis muy eficaces del
genoma y su expresion.

RÔLE DES BIOTECHNOLOGIES DANS LE DÉVELOPPEMENT 
DE LA CULTURE DU TOURNESOL DANS LE MONDE

RÉSUMÉ

L’amélioration du tournesol par les méthodes de culture conventionnelles
est significativement réduite par la pauvreté de la  base de gènes qui est due à
des incompatibilités naturelles, même entre des espèces semblables et par le
manque de temps de la plupart des programmes de sélection.  C’est pourquoi,
ces derniers temps, une grande attention a été accordée aux nouvelles technol-
ogies de biologie cellulaire et moléculaire qui représentent un outil puissant
pour compléter et parfaire les méthodes traditionnelles d’amélioration des
plantes.  Le concept des marqueurs basés sur l’ADN a révolutionné notre apti-
tude à accéder directement à quelque partie que ce soit du génome de la plante
et a conduit à de nouvelles opportunités comme celle du clonage basé sur carte
génétique.  Ce concept a aussi révolutionné notre aptitude à diriger la cul-
ture.   La régénération efficace de plantes fertiles à partir de cellules cultivées et
de protoplastes en combinaison avec de nouvelles méthodes d’introduction de
l’ADN et de sélection des cellules transformées a eu pour résultat la production
de tournesols transgéniques.  Des gènes utiles assurant la résistance envers les
insectes et les pathogènes ont été introduits. Cependant, l’amélioration molécu-
laire ultérieure du tournesol pourrait être limitée par un accès limité à ces
gènes utiles importants et par notre manque de connaissances (par exemple,
sur le contrôle de traits multigéniques comme le rendement et la résistance
aux stress biotique et abiotique).  C’est la raison pour laquelle la priorité
devrait être donnée au développement de cartes détaillées de chaînes de gènes
et à l’élaboration d’outils permettant une analyse plus efficace des génomes et
de leurs expressions.


