VARIABILITY FOR AGRONOMIC TRAITS IN TWO RANDOM-MATING SUNFLOWER POPULATIONS: MEANS, VARIANCE COMPONENTS AND HERITABILITIES

Waseem Hassan Syed 1* , Sadaqat Mehdi Syed 2 and Shahida Hasnain 1
¹ Department of Botany, University of the Punjab, Lahore, Pakistan ² Virtual University of Pakistan, Lahore, Pakistan

Received: April 24, 2003 Accepted: November 22, 2004

SUMMARY

Genetic variability of two random-mating sunflower (Helianthus annuus L.) populations, Local Open and UAF, was evaluated in two seasons (spring and fall). One hundred S_1 families selected randomly each population were included in the experiment conducted at Faisalabad (Pakistan).

Genotype \times environment variances for all traits, especially seed yield, oil yield and the number of achenes per head, were larger in Local Open than in UAF.

Key words: sunflower, random mating, variance components, heritabilities

INTRODUCTION

Random mating populations may be developed in cross-pollinated species. The design of random mating population permits the exploitation of heterosis during a limited number of generations.

Breeders of cross-pollinated crops have expressed concern about the narrow germplasm base displayed by commercial hybrids (Harvey, 1977). A potential avenue for surmounting this problem is to create genetically diverse random mating populations that may prove useful.

The sunflower populations UAF and Local Open were synthesized in 1986-87 by Dr. Syed Sadaqat Mehdi at University of Agriculture, Faisalabad. The population UAF was constituted by intermating exotic (USA) lines. The population Local Open was comprised of local lines/genotypes. Random mating with enforced outcrossing is designed to promote recombination and ensure the formation of a wide divergence of genotypes through the breakage of initial linkage blocks (Eberhart, 1967;

^{*} Correpsonding author

Doggett, 1972; Gardner, 1972; Hamson, 1959; Ross 1973). Random mating populations may be improved by using any of the several methods of recurrent selection that had proved successful for maize (Doggett, 1968; Doggett and Eberhart, 1967; Eberhart *et al.*, 1967; Empig *et al.*, 1972; Sprague and Eberhart, 1976).

Estimates of heritability from broad based random mating populations are useful in determining the best methods of selection to improve these populations for specific traits. Because of the diversity of germplasm in the populations, it seems that these estimates should have broader applicability than estimates derived from a narrow genetic base, such as the F_2 from a cross of two inbred lines. Studies with sunflower indicated that heritabilities for days to flowering (0.94), head size (0.81), seed weight (0.80) (Alza and Fernandez Martinez, 1997) and oil content (0.72) (Denis *et al.*, 1997) are high enough on narrow ground that mass selection should be an effective procedure.

Our study showed significant heritabilities for all traits. The heritability for days to flowering was high in the populations Local Open and UAF, 0.89 and 0.78, respectively. This suggests that testing of S_1 should be effective for population improvement.

The objective of our research was to evaluate S_1 families chosen randomly from two random-mating populations. Population family means and variances were determined for all agronomic traits and heritabilities were calculated by using estimates of variance components.

MATERIALS AND METHODS

One hundred S_1 families (progeny of bagged male fertile plants) from the populations Local Open and UAF were evaluated at PARS (Postgraduate Agricultural Research Station), University of Agriculture, Faisalabad, from 1997 to 1999 during spring and fall seasons.

All plantings were made in February/March for the spring and July/August for the fall season, using a modified randomized complete block design. There were three replicates in each experiment, four blocks per replicate, and each set contained 25 families. Individual plots were single rows 3.5 m long with 76 cm between rows. Data were obtained on 10 random plants in each plot for days to maturity, plant height, head diameter, 100-achene weight, number of achenes per head, seed yield, oil content and oil yield. Data for genotypes with too many missing values were discarded.

The families/block mean squares or mean cross products within experiment of each population during spring and fall were used to estimate the genotypic and phenotypic variance and covariance, respectively, after Robinson *et al.* (1951).

The following formulae were used for the estimation of variances and covariances.

 $\sigma^2 g = (MS_2 - MS_1)/r$

 $\sigma^2 p = MS_2/r$

 $\sigma g{=}(\mathrm{MP}_2{\text{-}}\mathrm{MP}_1)/r$

 $\sigma p = MP_2/r$

where,

 $\sigma^2 g$ =estimates of family genetic variance;

 $\sigma^2 p$ =estimates of family phenotypic variance;

 $\sigma g{=}estimates$ of family genetic covariance between i and j traits;

 σp =estimates of family phenotypic covariance between i and j traits;

 MS_2 and $\mathrm{MS}_1\mathrm{=estimates}$ of family mean square and error mean square, respectively

 MP_2 and MP_1 =estimates of family mean cross product and environmental mean cross product for i and j traits, respectively.

r=number of replicates.

Estimates of broad sense heritability on S_1 family mean basis were calculated for each trait in both populations using the formula:

 $h^2_{(BS)} = \sigma^2 g / \sigma^2 p$

Where, $\sigma^2 g$ and $\sigma^2 p$ are the estimates of genetic and phenotypic variances, respectively.

Standard error (SE) of broad sense heritability on a plot mean basis were calculated by the procedure described by Lothrop *et al.* (1985b):

 $SE_{(h2)} = SE(\sigma^2 g)/\sigma^2 p$

Where, $SE_{(h2)}$ =standard error of the broad sense heritability,

 $SE_{(\sigma_{2g})}$ =standard error of the family genetic variance, and

 σ^2 p=the family phenotypic variance.

Standard error of genetic variance (SE $\sigma^2 g$) was calculated by the formula of Lothrop *et al.* (1985):

 $SE(h^{2}) = SE(r^{2}g)/\sigma^{2}p$ $SE(\sigma^{2}g) = [2/C^{2} \{SMS^{2}i/(dfi+2)\}]^{1/2}$

Where,

C=coefficient of the components, within the expected mean squares,

 Ms_i =mean square for the ith trait and

 df_i =degree of freedom for the ith trait.

RESULTS

Means

Except for head diameter and achene weight, mean values for all the agronomic traits were larger for both sunflower populations in the spring than in the fall season (Tables 1 and 2).

Table	1:	Mean,	range	and	coefficients	of	variation	(CV, %)	of	S_1	families	of	sunflower
		populat	tion Loo	cal Oj	pen, grown d	luri	ng spring a	and fall		-			

	Spring				Fall			
Mean	Range	CV	Me	an	Range	CV		
29.757	15.80-38.90	11.738	22.8	320	8.00-33.8	67.506		
157.78	33.10-210.70	13.271	92.3	344	50.00-150.00	16.023		
76.190	61.00-89.00	4.996	55.3	310	43.000-72.00	9.757		
85.630	71.00-95.00	3.469	64.8	300	53.00-99.00	8.209		
103.28	110.00-115.00	6.738	102	.04	62.00-132.00	8.486		
14.206	4.04-24.50	17.042	13.1	120	6.00-26.00	22.698		
			6.7	49	2.41-12.67	20.299		
			274	.90	2.7-1627.7	76.100		
30.049	6.30-86.800	43.901	18.7	701	2.00-120.00	80.910		
707.50	60.70-1644.50	64.593	418	.10	46.00-1760.00	77.70		
			35.3	328	21.25-47.130	8.975		
			173.	200	15.20-709.60	79.470		
es per plant	HDDIA head diameter (cm)			SDYLD/ACR seed yield acre (kg/acre)				
ght (cm)	ACWT 100-achene weight (g)			OILC oil content (%)				
ring	ACPERHD num. of achenes per head			OILYLD oil yield per acre (kg/acre)				
rity	SDYLD/PLT seed y	vield per plant	(g)	± Sta	ndard error value			
	Mean 29.757 157.78 76.190 85.630 103.28 14.206 30.049 707.50 es per plant ght (cm) ing rity	Spring Mean Range 29.757 15.80-38.90 157.78 33.10-210.70 76.190 61.00-89.00 85.630 71.00-95.00 103.28 110.00-115.00 14.206 4.04-24.50 30.049 6.30-86.800 707.50 60.70-1644.50 es per plant HDDIA head diame ght (cm) ACWT 100-achene ing ACPERHD num. o SDYLD/PLT seed y SDYLD/PLT seed y	Spring Mean Range CV 29.757 15.80-38.90 11.738 157.78 33.10-210.70 13.271 76.190 61.00-89.00 4.996 85.630 71.00-95.00 3.469 103.28 110.00-115.00 6.738 14.206 4.04-24.50 17.042 30.049 6.30-86.800 43.901 707.50 60.70-1644.50 64.593 es per plant HDDIA head diameter (cm) ght (cm) ACWT 100-achene weight (g) ACPERHD num. of achenes per rity SDYLD/PLT seed yield per plant	Spring Mean Range CV Me 29.757 15.80-38.90 11.738 22.8 157.78 33.10-210.70 13.271 92.3 76.190 61.00-89.00 4.996 55.3 85.630 71.00-95.00 3.469 64.8 103.28 110.00-115.00 6.738 102 14.206 4.04-24.50 17.042 13.7 6.7 274 30.049 6.30-86.800 43.901 18.7 707.50 60.70-1644.50 64.593 418 35.3 173. es per plant HDDIA head diameter (cm) 173. ght (cm) ACWT 100-achene weight (g) ACPERHD num. of achenes per head rity SDYLD/PLT seed yield per plant (g) 50	Spring Mean Range CV Mean 29.757 15.80-38.90 11.738 22.820 157.78 33.10-210.70 13.271 92.344 76.190 61.00-89.00 4.996 55.310 85.630 71.00-95.00 3.469 64.800 103.28 110.00-115.00 6.738 102.04 14.206 4.04-24.50 17.042 13.120 6.749 274.90 30.049 6.30-86.800 43.901 18.701 707.50 60.70-1644.50 64.593 418.10 35.328 173.200 es per plant HDDIA head diameter (cm) SDYL ght (cm) ACWT 100-achene weight (g) OILC ght (cm) ACPERHD num. of achenes per head OILYL rity SDYLD/PLT seed yield per plant (g) ± Star	Spring Fall Mean Range CV Mean Range 29.757 15.80-38.90 11.738 22.820 8.00-33.8 157.78 33.10-210.70 13.271 92.344 50.00-150.00 76.190 61.00-89.00 4.996 55.310 43.000-72.00 85.630 71.00-95.00 3.469 64.800 53.00-99.00 103.28 110.00-115.00 6.738 102.04 62.00-132.00 14.206 4.04-24.50 17.042 13.120 6.00-26.00 6.749 2.41-12.67 274.90 2.7-1627.7 30.049 6.30-86.800 43.901 18.701 2.00-120.00 707.50 60.70-1644.50 64.593 418.10 46.00-1760.00 35.328 21.25-47.130 173.200 15.20-709.60 es per plant HDDIA head diameter (cm) SDYLD/ACR seed yield ac ght (cm) ACWT 100-achene weight (g) OILC oil content (%) ring ACPERHD num. of achenes per head OILYLD oil yield per acre (krity		

Table 2: Mean, range and coefficients of variation (CV, %) of $\rm S_1$ families of sunflower population UAF, grown during spring and fall

Traita		Spring				Fall		
Traits	Mean	Range	CV	Mea	n	Range	CV	
LPP	30.048	17.40-43.70	52.702	21.1	63	8.10-47.70	22.586	
PLHT	145.52	92.00-198.10	12.768	95.9	49 5	57.00-142.10	18.012	
DF	76.363	60.00-109.00	5.801	56.4	17	43.00-71.00	7.747	
DA	84.733	80.00-106.00	3.571	66.3	82 5	57.00-101.00	11.855	
DM	104.23	91.00-118.00	5.497	104.	13 6	67.00-132.00	7.711	
HDDIA	13.761	8.80-22.80	17.222	14.3	58	7.00-25.00	20.392	
ACPERHD				272.8	310 1	12.83-973.45	59.235	
SDYLD/PLT	29.593	10.00-93.300	42.973	18.5	22	0.75-82.00	69.495	
SDYLD/ACR	676.30	172.50-2145.90	42.599	411.	70 1	17.2-1932.00	68.933	
OILC				35.6	27 2	25.26-46.520	9.181	
OILYLD				148.	48	5.53-681.99	70.797	
LPP num. of leav	es per plant	HDDIA head diameter (cm)		Ś	SDYLD/ACR seed yield acre (kg/acre)			
PLHT plant heig	ght (cm)	ACWT 100-achene weight (g)		(OILC oil content (%)			
DF days to flower	ring	ACPERHD num. of	achenes per	head (DILYLD (oil yield per acre (kg/acre)	
DM days to matu	rity	SDYLD/PLT seed y	ield per plant	(g) :	(g) \pm Standard error value			

Table 3: Estin figure	iates ()	of mean s	quares ar	nong S ₁ fi	amilies of	sunflowe	r popula	ation Loc	al Open dı	uring sprir	ıg (top figur	e) and fall	(bottom
SOV	DF	LPP	PLHT	DF	DA	DM	HDDIA	ACWT	- ACPERHD	SDYLD/PLT	SDYLD/ ACR	OILC	OILYLD
Blocks	ю	21.518 NS {	839.0 NS	22.439 NS	20.306 NS	64.52 NS	26.211	*		654.96 NS	236344 NS		
		560.6 NS	225.2 NS	72.43 NS	25.32 NS	87.70 NS	29.879 N	IS 5.346 N	IS 48885 NS	3 281.3 NS	173150 NS	4.755 NS 1	02849 NS
	œ	3.416**	1251.3**	35.367**	12.977**	21.37 NS	59.423*	*		264.42**	354443*		
neps/piock		337.2*	405.6*	31.28 NS	10.01 NS	29.38 NS	14.856*	* 2.861*	۲ 168680* [*]	• 946.0**	423524**	2.363 NS 1	76185 NS
	96	28.036**	907.3**	33.509**	19.517**	61.4**	6.914*1	×		302.97**	259740**		
rai IIIIes/DIOCK		246.0 NS	325.2**	33.81*	37.65**	135.64**	14.325*	* 2.772*	* 60973**	285.4**	131641**	15.006** 1	38731 NS
	192	864.533	164.4	3.995	3.133	42.87	2.788			98.29	176969		
		223.8	157.9	26.01	24.43	46.20	5.564	1.336	29866	170.0	78212	7.981	168563
*, ** Significan	t at 0.	05 and 0.01	1 probabili	ty levels, r∈	espectively,	NS Non	significa	⊐t					
LPP number of le	aves p	her plant,	PLH	T plant heigł	nt (cm),		DF	lays to flow	ering,		DM days to mat	turity	
HDDIA head diar	neter (cm),	ACP	ERHD num	ber of achen	es per head	, ACV	/T 100-ach	ene weight (g),	SDYLD/PLT se	sed yield per	plant (g)
SDYLD/ACR se	ed yiel	d per acre (kg	j/acre),OILC	C oil content	(%),		OILY	rLD oil yield	d per acre (kç	/acre), =	± Standard erro	r value	
Table 4: Estim	ates (of mean squ	uares amo	ong S ₁ fan	nilies of su	aflower p	opulatio	n UAF du	uring sprin	g (top figur	e) and fall (t	ottom figu	ure)
SOV	Ы	ГРР	PLHT	- DF	D/		M	HDDIA	ACPERHD	SDYLD/PLT	SDYLD/ ACR	OILC	ΟΙΓΛΓD
Blocks	e	358.2 NS	S 695.6 N	VS 37.159	NS 18.55	1NS 24.4	18 NS 19	9.492 NS		86.43 NS	21839 NS		
		367.03*1	* 2153.5	** 119.08	3** 14.85	NS 52.9	94 NS 9	9.902**	196967**	1088.5 NS	335436*	5.659 NS	42905*
Reps/Block	8	285.1 NS	S 168.1 N	VS 41.02	** 33.22	7** 356	.27** 5	2.406**		832.82**	377316**		
			2272.3	** 47.01	** 94.42	NS 74	.53* 3	8.162**	91458**	592.4**	322411**	4.273 NS	39727**
Families/Block	96	252.5 NS	S 578.7*	r* 39.71∠	4** 14.32	3** 42.	84** 7	7.627**		243.03**	123239**		
			359.8*	** 25.35	** 80.36	96 **	.8** 1	1.629**	28476**	210.7**	101713**	20.899**	14326**
Error	192	2 246.8	230.5	8.41	2 5.42	28 14	1.51	2.443		94.29	51548		
			156.5	13.2	6 52.	2 48	3.09	4.383	19543	110.9	55856	5.948	7719
*, ** Significan	t at 0.	05 and 0.01	I probabili	ty levels, re	espectively,	NS Non	significa	nt					
LPP number of le	aves p	ver plant,	PLH	T plant heigł	nt (cm),		DF C	lays to flow	ering,	-	OM days to mat	turity	
HDDIA head diar	meter ((cm),	ACP	ERHD num	ber of achen	es per head	ACV ACV	/Т 100-ach	ene weight (g	(),	SDYLD/PLT S6	sed yield per	plant (g)
SUTLU/AUR SE	eu yiei	d per acre (Ky	J/acre), ULL		(%),		CIL	rlu oli yieit	а регасте (к	/acre), =	± Staridard ei u	r Value	

The maximum mean performances were recorded in both sunflower populations for seed yield per acre, followed by plant height during spring and number of achenes per head during fall season. In contrast, head diameter had the smallest values of mean (14.21 and 13.12 cm) in local open and (13,76 and 14.36 cm) in UAF population during spring and fall seasons, respectively.

Components of variance

The results demonstrated significant differences (P£0.01) among the two types of S_1 families for all the studied traits except the number of leaves per plant in UAF in the spring and Local Open in the fall (Tables 3, 4, 5 and 6).

Table 5: Estimates of genetic variance ($\sigma^2 g$) and environmental variance ($\sigma^2 e$) S_1 of Local Open families in spring and fall

Trait	Genetic v	ariance (σ ² g)	Environmental variance (σ ² e)		
iidit –	Spring	Fall	Spring	Fall	
LPP	7.844	7.400	1.501	74.600	
PLHT	247.666	55.766	54.766	52.633	
DF	9.838	2.600	1.331	8.670	
DA	5.461	4.406	1.044	8.143	
DM	6.180	29.813	14.29	15.400	
HDDIA	1.375	2.920	0.929	1.854	
ACWT		0.478		0.445	
ACPERHD		130.69		9955.333	
SDYLD/PLT	68.226	38.466	32.763	56.666	
SDYLD/ACR	27590.333	17809.666	58989.666	26070.660	
OILC		2.3416		2.6603	
OILYLD		6722.666		56187.666	
LPP num. of leaves per plan	t HDDIA head	l diameter (cm)	SDYLD/ACR see	ed yield acre (kg/acre)	
PLHT plant height (cm)	ACWT 100-	achene weight (g)	OILC oil content (%)		
DF days to flowering	ACPERHD	num. of achenes per head	OILYLD oil yield per acre (kg/acre)		
DM days to maturity	SDYLD/PL1	seed yield per plant (g)	\pm Standard error v	value	

Error variances for S_1 families were greater in the less favorable and more variable environments of fall. Similarly, there were increases in Local Open as compared with UAF in s²ge for almost all traits but especially for seed yield, oil yield and number of achenes per head.

The S_1 family genetic variance (s²g) decreased in the population Local Open for days to maturity, seed yield per acre in the spring season and for all traits except days to maturity, head diameter and achene weight in the fall season. In the population UAF, the S_1 family genetic variance for plant height, days to flowering, seed yield per plant and seed yield per acre, were larger in the spring season than in the fall season as a result of large increase in s²ge and environment, less favorable for the expression of s²g for these traits. These results are in agreement with the findings of Deokar and Patil (1978) who observed that the estimates for genetic and phenotypic variances in sunflower were highest for seeds per head, plant height and 1000-seed weight.

Phenotypic variance estimates were larger during the spring season for plant height, days to flowering, seed yield per plant and seed yield per acre as compared with the fall season, while in UAF sunflower population estimates of phenotypic variance were also larger during the spring than the fall season for number of leaves per plant, plant height, days to flowering, seed yield per plant and seed yield per acre.

Genetic variance (σ²g) Environmental variance ($\sigma^2 e$) Trait Spring Fall Spring Fall LPP 1.9 3.646 82.266 3.476 PLHT 116.133 67.633 76.766 52.300 DF 10.434 4.03 2.804 4.420 DA 2.965 9.413 1.809 17.373 DM 9.443 16.24 4.836 16.030 HDDIA 1.728 2.415 0.814 1.461 ACPERHD 2977.666 6514.333 SDYLD/PLT 49.58 33.266 31.333 3698.666 SDYLD/ACR 23897 15285.666 17182.666 18618.666 OII C 4,9836 1.9826 OILYLD 2202.3333 2573 LPP num. of leaves per plant HDDIA head diameter (cm) SDYLD/ACR seed yield acre (kg/acre) PLHT plant height (cm) ACWT 100-achene weight (g) OILC oil content (%) DF days to flowering ACPERHD num. of achenes per head OILYLD oil yield per acre (kg/acre) DM days to maturity SDYLD/PLT seed yield per plant (g) ± Standard error value

Table 6: Estimates of genetic variance $(\sigma^2 g)$ and environmental variance $(\sigma^2 e)$ among S_1 families of sunflower population UAF evaluated in spring and fall

In the population Local Open, the estimates of environmental variance were larger for seed yield per acre and plant height in the spring season and for seed yield per acre, number of achenes per head and oil yield in the fall season. In the population UAF, the estimates of environmental variance were larger for seed yield per acre and number of leaves per plant in the spring season and for seed yield per acre, number of achenes per head, seed yield per plant and oil yield in the fall season.

Heritabilities

Estimates of broad sense $(h^{2}b)$ heritability of all examined traits were significant as their absolute values exceeded twice their respective standard errors in both populations, during spring and fall seasons (Tables 7 and 8). This indicated the presence of genetic variances among S_1 families for all the traits in both sunflower populations. However, the genotype × environment interaction can bias the genetic variance estimates upward or downward.

Troit	Heri	tability (h ² BS)		
ITall	Spring	Fall		
LPP	0.8394 ± 0.145	0.9024±0.142		
PLHT	0.8189±0.145	0.5144 ± 0.143		
DF	0.8808±0.145	0.2307 ± 0.144		
DA	0.8395±0.145	0.3511 ± 0.143		
DM	0.3019±0.143	0.6593 ± 0.144		
HDDIA	0.5969 ± 0.144	0.6115 ± 0.144		
ACWT		0.5173±0.142		
ACPERHD		0.5101 ± 0.143		
SDYLD/PLT	0.6755 ± 144	0.4043 ± 0.143		
SDYLD/ACR	0.3186±0.210	0.4058 ± 0.143		
OILC		0.4681 ± 0.143		
OILYLD		0.1068 ± 0.142		
LPP num. of leaves per plant	HDDIA head diameter (cm)	SDYLD/ACR seed yield acre (kg/acre)		
PLHT plant height (cm)	ACWT 100-achene weight (g)	OILC oil content (%)		
DF days to flowering	ACPERHD num. of achenes per head	OILYLD oil yield per acre (kg/acre)		
DM days to maturity	SDYLD/PLT seed yield per plant (g)	± Standard error value		

Table 7: Estimates of heritability	(h^2BS) along with	their respective sta	andard errors amo	ng S ₁
Local Open families in s	spring and fall			

Table 8: Estimates of g heritability (h^2BS) along with their respective standard errors among S_1 families of sunflower population UAF evaluated in spring and fall

Troit	Herit	tability (h ² BS)		
Indit	Spring	Fall		
LPP	0.2257±0.142	0.5119 ± 0.143		
PLHT	0.6020 ± 0.144	0.5639 ± 0.144		
DF	0.7881 ± 0.145	0.4769 ± 0.143		
DA	0.6210 ± 0.144	0.3514 ± 0.143		
DM	0.6612 ± 0.306	0.5032 ± 0.143		
HDDIA	0.6797 ± 0.144	0.6231 ± 0.144		
ACPERHD		0.3137 ± 0.143		
SDYLD/PLT	0.6120 ± 0.306	0.4736±0.142		
SDYLD/ACR	0.5817±0.144	0.4508 ± 0.143		
OILC		0.7153 ± 0.144		
OILYLD		0.4611 ± 0.143		
LPP num. of leaves per plant	HDDIA head diameter (cm)	SDYLD/ACR seed yield acre (kg/acre)		
PLHT plant height (cm)	ACWT 100-achene weight (g)	OILC oil content (%)		
DF days to flowering	ACPERHD num. of achenes per head	OILYLD oil yield per acre (kg/acre)		
DM days to maturity	SDYLD/PLT seed yield per plant (g)	± Standard error value		

In the local open sunflower population, high estimates of genetic variance and low estimates for environmental variance for days to flowering, days to anthesis, number of leaves per plant, plant height, seed yield per plant and oil content resulted in large significant heritabilities (spring and fall seasons). Estimates of heritability were high for days to flowering (0.88 and 0.78) in the populations Local Open and UAF, respectively, during spring. The low genetic variance and high environmental variance for days to maturity (spring season) and number of leaves per plant (fall season) in Local Open, and for number of leaves per plant (spring season) and number of achenes per head (fall season) in UAF resulted in low heritabilities.

DISCUSSION

Means

The most likely reason for the low estimates of head diameter and achene weight during fall season was variable environment. Head diameter in the sunflower is controlled by pleiotropic gene effects (Dua and Yadava, 1985). As discussed by Volf and Kasyanenko (1972), and Ivanov and Stoyanova (1980), oil content was additively controlled and this type of gene action might well have been influenced by the environment. A comparison among S₁ families from the populations Local Open and UAF exhibited similar or larger mean values for all the traits except head diameter during spring than during the fall season.

These results are in conformity with those of Cockerell (1915), Dyer *et al.* (1959), Polmer and Phillips (1963), Robinson (1971), Heiser (1976a), Knowles (1978), Ivanov and Stoyanova (1980), and Mirza (1993).

Seed yield is undoubtedly a quantitative trait. Its inheritance is complex and its expression is attributable to various components, which ultimately determine the breeding value of the trait. The environmental conditions prevailing in the spring seemed to be favorable and resulted in higher estimates of seed yield and its components than the respective values in the fall.

The values of the studied characters were in the range of those recorded by Cockerell (1915) for plant height, Polmer and Phillips (1963) for number of leaves per plant, Robinson (1971) for days to flowering and maturity, and Heiser (1976) for head diameter. The findings of Mehdi (1987) and Mirza (1993) were similar.

The predominantly continuous distribution suggests primarily quantitative inheritance in which both additive and non-additive genetic effects for traits are considered to be of importance. The additively controlled characters were influenced by the environment. Therefore, the range of values (extreme values) were recorded for all the agronomic traits under diverse environments of the spring and fall seasons.

Larger estimates of variation coefficients were in agreement with the findings of Shinde *et al.* (1983) and Mirza (1993). They estimated high variation coefficients for plant, head diameter, 100-achene weight and seed yield per plant. Our findings agree with those of Reddy and Reddy (1979) who found increased values of variation coefficients for yield and yield components.

The magnitude of variation coefficients indicated that both sunflower populations had exploitable genetic variability for all agronomic characters under investigation.

Components of variance

Characters are controlled by additive gene action (Putt, 1966; Vranceanu, 1970; Gundaev, 1971; Volf and Dumacheva, 1973; Luczkiewicz, 1975; Miller *et al.*, 1980; Rincon Carreon *et al.*, 1983; Shinde *et al.*, 1983; Miller and Hammond, 1991; Marinković, 1993b). and nonadditive variance for oil content (Rincon Carreon *et al.*, 1983) and dominance (Marinković, 1993a); nonadditive for head diameter and seed yield (Putt, 1966 and Castiglioni *et al.*, 1999); and dominance component for seed yield (Miller *et al.*, 1980). However, yield improvement was also possible through better crop management (Benjamin and Shu Geng, 1982). They also indicated that, although cultivars are phenotypically and genotypically different, their responses to the date of planting and the biological systems controlling the interrelationships between morphological, yield and economic characters are similar. Razi and Assad (1999) found also that seed yield and oil content showed considerable genotypic and phenotypic variations.

Some traits exhibit one or two distinct phenotypes in a segregating population even though the undergoing genetic basis is polygenic (Kearsey and Pooni, 1996).

The comparison of variance components for the S_1 families (Tables 3, 4, 5 and 6) showed that the environment generally had a larger effect in the fall, because the two samples were equally random.

Heritabilities

High estimates of heritability for days to flowering in both sunflower populations were in conformity with the findings of Russell (1953), Shabana (1974), Zali *et al.* (1976), Mehdi (1987), Mirza (1993), Mirza *et al.* (1994) and Alza and Fernandez Martinez (1997).

In our experiment, heritabilities for the yield components usually were high, due to favorable environment and high variability. They were similar to those reported by Volf and Dumacheva (1973). Pathak (1974) and Omran *et al.* (1976) who estimated 32 to 94%, higer, relatively high, respectively. Our results for heritability of traits, *viz.*, the number of leaves per plant, plant height, days to anthesis, days to maturity, head diameter, number of achenes per head, achene weight, seed yield per plant, seed yield per acre, oil content and oil yield, were in agreement with the results of Deokar and Patil (1978) who estimated high heritabilities for the number of days to maturity, plant height, 1000-seed weight and seed yield per plant, Shinde *et al.* (1983) who reported high heritability estimates for plant height, head diameter, 100-achene weight and seed yield per plant. Heritability estimates of Kshirsagar *et al.* (1995) were high for plant height and 100-seed weight and moderate for yield. Virk and Pooni (1994) evaluated high broad sense heritability and

exploitable levels of transgression for flowering time, final height, head diameter and seed yield. Gumenjuk (1962) reported that earliness was a heritable trait but not fully stabilized. Cespedes Torres et al. (1984) estimated broad sense heritability for oil content and achene yield at 26.80% and 48.41%, respectively. Shabana (1974) and Fick (1975) estimated that broad sense heritability for oil percentage in seed ranged from 65 to 72%. Kloczowski (1975) and Shabana (1974) found heritability in the broader sense on a single plant basis to be 18% for yield as compared with a range of 22 to 49% for plant height, weight of 1000-seeds, seed oil percentage, hull percentage of seed and head diameter. Fick (1975) reported narrow sense estimates of 52 and 61% for oil percentage of seeds. Abe-Elkreem et al. (1983) studied the inheritance of oil content in sunflower and reported that significant improvement in oil content can be made by selecting individual plants in early generations on account of high heritability estimates. Mirza (1993) concluded that broad sense heritability estimates for days to maturity, plant height, head diameter, number of achenes per head, 100-achene weight, seed yield per plant, seed yield per ha, oil content percentage and oil yield per ha were significant in both sunflower populations (Gene Pool-I and UAF) during 1990 and 1991.

In this study, the estimates of high heritability were the result of near optimum growth conditions, the amount of genetic variability, i.e., the magnitude of the differences among different individuals (or families) in the base population, and the magnitude of the masking effect of the environmental and interaction components of variability. The environmental variance cannot be removed because it includes by definition all non-genetic variance, and much of this is beyond experimental control. Hence, the selection in the S_1 families was more effective for characters with high heritability. In practice, the higher the heritability, the lower the number of plants that should be selected.

In conclusion, any estimate of heritability is unique. It is a property of a specific population in a specific experiment and also the function of its gene frequency. Therefore, the numerical use of estimates out of context is invalid though it is sometimes reasonable to consider general orders of magnitude of heritabilities in a wider framework (Simmonds, 1979b).

REFERENCES

- Alza, J.O. and Fernandez Martinez, J.M., 1997. Genetic analysis of yield and related traits in sunflower (*Helianthus annuus* L.) in dryland and irrigated environments. Euphytica 95(2): 243-251.
- Benjamin, H.B. and Shu G., 1982. Interrelationships of morphological and economic characters of sunflower. Crop Sci. 22: 817-822.
- Castiglioni, V.B.R., Deoliveira, M.F. and Arias, C.A.A., 1999. Combining ability analysis among inbred lines of Sunflower. Pesquisa Agropecuaria Brasileira 34(6): 981-988.
- Cespedes Torres, E., Ortegon Morales, A.S. and Lopez Perez, E., 1984. Recurrent selection in S₁ lines for yield and oil content in sunflower *Helianthus annuus* L. Agricultura Tecnica en Mexico 10(2): 121-132.
- Cockerell, T.D.A., 1915. Specific and varietal characters in annual sunflowers. Proc. Am. Nat. Acad. 59: 609-622.

Denis, L., Dominguez, J., Baldini, M. and Vear, F., 1994. Genetic studies of hullability in comparison with other sunflower seed characteristics. Euphytica 79(1-2): 29-38.

Deokar, A.B. and Patil, F.B., 1978. Analysis of parameters of variability in some indian varieties of sunflower. J. Maharashtra Agric. Univ. 3(1): 69-70.

Doggett, H., 1968. Mass selection systems for sorghum *Sorghum bicolor* L. Moench. Crop Sci. 8: 391-392.

Doggett, H. and Eberhart, S.A., 1967. Recurrent selection in sorghum. Sols Afr. 12: 119-122.
 Dua, R.P. and Yadava, T.P., 1985. Genetics of seed yield and its components in sunflower. Proc. of the 11th Inter. Sunflower Conf., Mar del Plata, Argentina, pp. 627-632.

Dyer, H.J., Skok, J. and Scully, N.J., 1959. Photoperiodic behaviour of sunflower. Bot. Gaz. 121: 50-51.

Eberhart, S.A., Harrison, M.N. and Ogada, F., 1967. A comprehensive breeding system. Der Zuchter. 37: 169-174.

Empig, L.T., Gardener, C.O. and Compton, W.A., 1972. Theoretical gains for different population improvement procedures. Nebraska. Agric. Exp. Stn. Misc. Publ., 26. Revised, Lincoln.

Fick, G.N., 1975. Heritability of oil contents in sunflower. Crop Sci. 15: 77-78.

Gumenjuk, A.D., 1962. Utilizing photoperiodism in breeding sunflower for earliness. Transl. Sci. Res. Inst. Pl. Industr. Breed. Genet. 7: 87-91.

Gundaev, A.I., 1971. Basic principles of sunflower selection. In: Genetics Principles of Plant Selection. Nauka, Moscow. [Trans. Dep. of the Secretary of State. Ottawa, Canada, 1972], pp. 417-465.

Harvey, P.H., 1977. Sorghum germplasm base in the United States. Proc. Corn and Sorghum Res. Conf. 32: 186-198.

Heiser, C.B., 1976a. The Sunflower. University of Oklahoma Press, Norman.

Ivanov, P., and Stoyanova, Y., 1980. Studies in the phenotypic and genotypic variability and some correlations in sunflower (*Helianthus annuus* L.). Proc. of the 9th Inter. Sunflower Conf., Malaga, Spain, pp. 336-342

Kearsey, M.J. and Pooni, H.S., 1996. The Genetic Analysis of Quantitative Traits. Chapman and Hall, London.

Kloczowski, Z., 1975. Studied on some features of oil sunflower and their significance in breeding that plant in Poland. (In Polish). Hodowla Rosl. Aklim. Nasienn. 19(2): 89-131.
Knowles, P.F., 1978. Morphology and anatomy. *In:* J.F. Carter (ed.) Sunflower Science and

Technology Agronomy. 19. Madison, USA, pp. 55-85. Kshirsagar, A.R., Deshmukh, D.T. and Dudhe, R.S., 1995. Study of genetic variability in

- Kshirsagar, A.R., Deshmukh, D.T. and Dudhe, R.S., 1995. Study of genetic variability in sunflower. PKV-Res. J. 19(2): 175.
- Lothrop, J.E, Atkins, R.E. and Smith, O.S., 1985a. Variability for yield and yield components in IAPIR grain sorghum random-mating population. I. Means, variance components and heritabilities. Crop Sci. 25: 235-240.
- Lothrop, J.E., Atkins, R.E. and Smith, O.S., 1985. Variability for yield and yield components in IAPIR grain sorghum random-mating population. II. Correlations, estimated gains from selection, and correlated responses to selection. Crop Sci. 25: 240-244.

Luczkiewicz, T., 1975. Inheritance of some characters and properties in sunflower *Helianthus annuus* L. Genet. Pol. 16: 167-184.

Marinković, R., 1993a. Components of genetic variability for characters affecting oil yield of sunflower (*Helianthus annuus* L.). J. Genet. Breed. 47(4): 289-293.

Marinković, R., 1993b. Combining ability of some inbred sunflower (Helianthus annuus L.) lines. Indian J. Genet. Plant Breed. 53(3): 299-304.

Mehdi, S.S., 1987. Predicted response to S_1 selection for agronomic and disease resistance traits in two sunflower populations. Dissertation Abstracts International. B. Science and Engineering 47(9): 3587B.

Miller, J.F. and Hammond, J.J., 1991. Inheritance of reduced height in sunflower. Euphytica 53: 131-136.

Miller, J.F., Hammond, J.J. and Roath, W.W., 1980. Comparison of inbred vs. single-cross testers and estimation of genetic effects in sunflower. Crop Sci. 20: 703-706.

Mirza, M.Y., 1993. Evaluation of selection indices for seed yield and oil content in two random mating sunflower (*H. annuus* L.) populations. Ph.D. thesis. Department of P.B.G. Uni. of Agri. Faisalabad, Pakistan.

Mirza, S.H., Nessa, D. and Azimuddin, M., 1994. Genetic parameters and character association in sunflower *Helianthus annuus* L. Bangladesh J. Bot. 23(2): 175-180. Omran, A.O., Abol-Zahab, A.M. and Haikal, M.A., 1976. Evaluation of sunflower cultivars. I. Heritability and variability of metric traits (Abst.). Proc. of the 7th Inter. Sunflower Conf., Krasnodar, USSR, pp. 59-60.

Pathak, R.S., 1974. Yield components in sunflower. Proc. of the 6th Int. Sunflower Conf., Bucharest, Romania, pp. 271-281.
Palmer, J.H. and Phillips, I.D.J., 1963. The effect of the terminal bud, indoleacetic acid and

- Palmer, J.H. and Phillips, I.D.J., 1963. The effect of the terminal bud, indoleacetic acid and nitrogen supply on the growth and orientation of the petiole of *Helianthus annuus* L. Physiol. Plant. 16: 572-584.
- Putt, E.D., 1966. Heterosis, combining ability and predicted synthetics from a diallel cross in sunflower *Helianthus annuus* L. Can. J. Plant Sci. 46: 59-67.
- Razi, H. and Assad, M.T. 1999. Comparison of selection criteria in normal and limited irrigation in sunflower. Euphytica 105(2) :83-90.
- Reddy, T.N. and Reddy, P.S., 1979. Studies on heritability genetic advance in certain hybrids of sunflower. Indian J. Hered. 11(3): 21-23.
- Rincon Carreon, J.I. and Palafox de la barreda, A., 1983. Recurrent slection for general combining ability (GCA) of S_1 lines in sunflower (*Helianthus annuus* L.) Departamento de fitotecnia. Univ. Autonoma. Chapingo, Edo. de Mex., Mexico.
- Robinson, H.R., Comstock, R.E., and Harvey, P.H., 1951. Genotypic and phenotypic correlations in corn and their implication in selection. Agron. J. 43: 283-287.
- Russell, W.A., 1953. A study of the interrelationships of seed yields, oil content, and other agronomic characters with sunflower inbred lines and their top crosses. Can. J. Agric. Sci. 33: 291-314.
- Shabana, R., 1974. Genetic variability of sunflower varieties and inbred lines. Proc. of the 6th Int. Sunflower Conf., Bucharest, Romania, pp. 263-269.
- Shinde, Y.M., Wattanwat, M.J., and Patil, G.D., 1983. Variability and correlation studies in sunflower. J. Maharashtra Agric. Univ., 8: 122-123.
- Simmonds, N.W., 1979a. Principles of Crop Improvement. Longman Group Limited, London. Sprague, G.F. and Eberhart, S.A., 1977. Corn breeding. In: G.F. Sprague (ed.) Corn and Corn Improvement. Agronomy 18: 305-362. Am. Soc. of Agron., Madison, Wisconsin.
- Virk, P.S. and Pooni, H.S., 1994. Genetic potential of selected sunflower crosses for producing early flowering recombinant inbred lines. J. Genet. Breed. 48(1): 47-54.
- Volf, F.G., Kasyanenko, A.N., 1972. Inheritance of characters in a sunflower population, Selektsiya i Semenovodstvo Resp. Mezhred. Temat. Nauch. Sb. 21: 37-42. (Pl. Br. Abst., 45(9): 7598, 1975).
- Vranceanu, A.V., 1970. Advances in sunflower breeding in Romania. Proc. of the 4th Int. Sunflower Conf., Memphis. Tenn., USA, pp. 136-148.
- Zali, A.A., Samadi, B.Y. and Sarafi, A., 1976. Analysis of diallel crosses among six inbred lines of sunflower. (Abst.), Proc. of the 7th Int. Sunflower Conf., Krasnodar. USSR, pp.62.

VARIABILIDAD DE LAS CARACTERÍSTICAS AGRONÓMICAS EN DOS POBLACIONES DE GIRASOL CRUZADAS AL AZAR; VALORES MEDIOS, COMPONENTES DE VARIACIÓN Y HERITABILIDAD

RESUMEN

La variabilidad genética del girasol (*Helianthus annuus* L.) cruzado al azar, las poblaciones Local Open y UAF, fue evaluada durante dos campanas (de primavera y otono). Cien familias S_1 de cruzamiento al azar de las poblaciones Local Open y UAF respectivamente, eran incluidas en el ensayo realizado en Faisalabad (Pakistán).

Las variaciones del entorno del genotipo \times eran altas para todas las características, y sobre todo para el rendimiento de semilla, rendimiento de aceite y el número de granos por capítulo, en la población Local Open en relación con la población UAF.

VARIABILITÉ DES CARACTÉRISTIQUES AGRONOMIQUES DE DEUX POPULATIONS DE TOURNESOLS CROISÉES AU HASARD; VALEURS MOYENNES, COMPOSANTS DE VARIANCE ET TRANSMISSION

RÉSUMÉ

La variabilité génétique de tournesols croisés au hasard (*Helianthus annuus L.*), population Local Open et UAF, a été évaluée au cours de deux saisons (printemps et automne). Cent familles S₁ croisées au hasard, pour chacune des populations Local open et UAF ont été incluses dans l'expérience effectuée à Faisalabad (Pakistan).

Les variances génotype x environnement étaient élevées pour toutes les caractéristiques et surtout pour le rendement de graines, le rendement d'huile et le nombre de graines par tête pour la population Local Open comparativement à la population UAF.