

The biology of *Phelipanche* and *Orobanche*

Philippe Delavault

Laboratory of Plant Biology and Pathology

SFR Quassav - RFI Objectif Végétal

University of Nantes - France

Phelipanche ramosa

Orobanche cumana

- First infestations: . 20 years ago
- Favorable factors:
- . Intensive cropping of winter oilseed rape
- . Absence of efficient chemicals and host resistances
- . Clay and limestone soils
- Level of infestation: . Variable according to the year
 - . High levels with non tolerant cultivars « no yield »

- Significant symptoms during winter
- Growth is reduced in spring

Severe impact on yields

Mapping of infestations Crops are under high survey by farmers and farm technicians

"to bring the information back up from the field"

Oilseed rape

Mapping of infestations Crops are under high survey by farmers and farm technicians

"to bring the information back up from the field"

Hemp

Mapping of infestations Crops are under high survey by farmers and farm technicians

"to bring the information back up from the field"

Tobacco

Orobanche cumana: an agronomic issue in France in sunflower

- First infestations: . Several years ago
- Favorable factors:
- . Intensive cropping of sunflower
- . Resistance overcomes by new races
- Level of infestation: . Variable according to the year
 - . High levels with non resistant varieties « no yield »

Orobanche cumana: an agronomic issue in France in sunflower

Mapping of infestations Crops are under high survey by farmers and farm technicians

"to bring the information back up from the field"

Sunflower

Broomrape life cycle

UNIVERSITÉ DE NANTES

A original germination process

Germination stimulants

Sesquiterpene lactones from sunflower (Joel *et al.*, 2011; Raupp and Otmar, 2013)

Transcriptomic approach using a cDNA-AFLP procedure on *Phelipanche ramosa* :

- 7d conditioned seeds
- 7d conditioned seeds 2h GR24 or ITC treatment
- 7d conditioned seeds 6h GR24 or ITC treatment

(mycorrhizal fungus *Gigaspora rosea*, Besserer *et al.*, 2008; *Arabidopsis*, Mashiguchi *et al.*, 2009 – Nelson *et al.*, 2010)

TDF #	Regulation		Best Arabidopsis Hit (Accession No.)	Functional category	E value	
	2h	6h				
1 5	+++	+ 0	Sulphite reductase (NP 196079) Sucrose synthase 3 (NP_192137)	Oxidation-reduction processes Carbohydrate metabolic processes	2.00E-08 6.00E-30	
6	-	-	High mobility group (HMG1/2) domain-containing protein (NP_565788)	Nucleotide binding	8.00E-17	
7	0	-	Ninja-family protein AFP3 (NP_189598)	Nucleotide binding	7.00E-19	
8	0	+	Peptidylprolyl isomerase ROF2 (NP_199668)	Response to stress	6.00E-22	
11	0	+	Heat shock protein 81.4 (NP_200411)	Response to stress	3.00E-65	
13	0	+	PPPDE putative thiol peptidase family protein (NP_187365)	Unknown	1.00E-24	
14	0	+	Rossmann-fold NAD(P)-binding domain-containing protein (NP_175552)	Oxidation-reduction processes	1.00E-16	
20	+	0	Trans-cinnamate 4-monooxygenase (NP_180607)	Secondary metabolic processes	0.006	
26	+	0	HIPL2 protein (NP_201069)	Carbohydrate metabolic processes	3.00E-08	
28	+	+	Methionine synthase 2 (NP_001118564)	Cellular amino acid metabolic processes	3.00E ⁻²¹	
30	+	+	Abscisic acid 8'-hydroxylase 1 (NP_974574)	Response to stress	0.007	
31	+	0	Acetylomithine deacetylase (NP_001190758)	Protein metabolic processes	0.091	
32	-	-	26S proteasome regulatory subunit 4-A (NP_194633)	Protein metabolic processes	1	
33	+	+	RNA recognition motif-containing protein (NP_197436)	Nucleotide binding	2.00E-23	
36	0	+	Heat shock 70kDa protein 1 (NP 195870)	Response to stress	0.073	
37	+	+	Abscisic acid 8'-hydroxylase 1 (NP 974574)	Response to stress	0.001	
38	0	7	BI1-like protein (NP_567466)	Unknown	3.00E-16	
39	+	+	Heat shock protein \$1-1 (NP_200076)	Response to stress	3.00E-23	
40	+	0	Putative aquapoin TIP3-2 (NP_173223)	Transport	6.00E-50	
41	+	+	Beta-glucosidase 44 (NP_188436)	Carbohydrate metabolic processes	5.00E-41	
44	0	+	Glutathione S-transferase PM24 (NP_192161)	Response to stress	6.00E-06	
45	0	+	Heat shock protein 21 (NP 194497)	Response to stress	0.02	
49	+	0	Catalase 2 (NP_195235)	Response to stress	1.00E-48	
50	+	0	Heat shock protein 70B (NP_173055)	Response to stress	1.00E-79	
51	+	0	Phenylalanine ammonia-lyase 3 (NP_001190223)	Response to stress	6.00E-10	
58	0	+	Putative xyloglucan glycosyltransferase 8 (NP_180039)	Carbohydrate metabolic processes	1.00E-26	

The up-regulated transcripts 30 and 37 encode an abscisic acid 8'hydroxylase or CYP707A, an ABA catabolic enzyme

ABA 8'-hydroxylases (CYP707A) catalyze ABA hydroxylation and produce 8'-hydroxy ABA which is then spontaneously isomerized to phaseic acid

CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8'-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis

by Masanori Okamoto, Ayuko Kuwahara, Mistunori Seo, Tetsuo Kushiro, Tadao Asami, Nobuhiro Hirai, Yuji Kamiya, Tomokazu Koshiba, and Eiji Nambara

Plant Physiology, 2006, Volume 141(1):97-107

PrCYP707A1, an ABA 8'-hydroxylase encoding gene, is strongly upregulated in response to GR24 and ITC

 P. ramosa seeds germinate after the endogenous ABA content reaches a sufficient low level through CYP707A dependent catabolism triggered by GS

In situ localization of PrCYP707A1 transcripts in longitudinal sections of P. ramosa seeds

Plakhine et al., 2012 Toluidine blue staining Negative control 7 d conditioned seed 7 d conditioned seed + 6 h GR24 treament

SLs induce a change in the spatial localization of *PrCYP707A1* expression in seeds
SLs induce *PrCYP707A1* mRNA accumulation in cells close to the micropyle

Putative location of germination stimulant receptors in perisperm cells?

□ Control

	EC ₅₀ :						
	rac-GR24	DCL	2-PEITC	KAR1			
P. ramosa	1.10 ⁻¹²	-	1.10 ⁻⁹	-			
O. cumana	1.10 ⁻¹¹	1.10 ⁻¹⁰	-	-			

1.10-7

1.10-8

1.10-10

O. minor

S. hermonthica

High affinity ____ Low affinity ____ No activity

-

-

Molecules that trigger the germination induce an up-regulation of a unique CYP707A gene in obligate root parasitic plants

Seed germination in facultive root parasitic plants

GR24 can improve the seed germination of the facultative hemiparasitic plant *Triphysaria versicolor* along with an up-regulation of *TvCYP707A1*

Seed germination in autotrophic plants

GR24 can improve the seed germination of the autotrophic plant Arabidopsis thaliana

Autotrophic plants

Obligate root parasitic plant

Seed germination in plants

• A minimal 4 days conditioning period is required before SL perception and *PrCYP707A1* up-regulation.

During the conditioning period a DNA demethylation process occurs which is needed for the gene expression of CYP707A and then the germination of the seeds.

Broomrape life cycle

What makes a vascular plant a parasite?

The presence of a HAUSTORIUM, a specialized invasive organ in parasitic plants

From the Latin word "haurire" meaning "to draw"

- Attachment
- Penetration
- Connection with host vascular system

Brassica napus root exudates induce Early Haustorium Structures (EHS) at the apex of *Phelipanche ramosa* radicle

72hrs in control buffer

72hrs in *B. napus* root exudates

Induction of EHS enhances aggressiveness of *P. ramosa* germinated seeds

Microarray: control vs 12 or 24 h treatment with *B. napus* root exudates

cluster	seq number with hit blast <i>A. thaliana</i>	average Log ₂ (FC)	
pool up-regulated	974	1.4 ± 0.7	
pool down-regulated	720	-0.8 ± 0.3	

Gene Ontology term enrichment analysis

Selected significant GO terms for pooled annotated DEGs

Upregulated genes were notably enriched for terms corresponding to response to hormones and signaling pathway

Response to hormones

	early haustoria induction (%)						
compound	10 ⁻⁴ M	10⁻⁵ M	10⁻ ⁶ M	10 ⁻⁷ M	10 ⁻⁸ M	10 ⁻⁹ М	1
GR24	NI	NI	NI	NI	NI	NI	
Brassinosteroid	NI	NI	NI	NI	NI	NI	
Gibberellin (GA3)	NI	NI	NI	NI	NI	NI	
ABA	NI	NI	NI	NI	NI	NI	
Auxin (NAA)	NI	NI	NI	NI	NI	NI	
Ethylene (ACC)	NI	NI	NI	NI	NI	NI	
Jasmonate	NI	NI	NI	NI	NI	NI	
Cytokinin	NI	NI	NI	82 ± 4	81 ± 1	NI	
exudate	/	/	/	/	/	/	88 ± 2

۸	compound	earry naustona induction (%)						
A	compound	10⁻⁴ M	10⁻⁵ M	10⁻ ⁶ M	10⁻ ⁷ M	10 ⁻⁸ M	10 ⁻⁹ M	1
	DMBQ	NI	NI	NI	NI	NI	NI	
	syringic acid	NI	NI	NI	NI	NI	NI	
	vanilic acid	NI	NI	NI	NI	NI	NI	
	vanillin	NI	NI	NI	NI	NI	NI	
	p-coumaric acid	NI	NI	NI	NI	NI	NI	
	coniferyl alcohol	NI	NI	NI	NI	NI	NI	
	quercetin	NI	NI	NI	NI	NI	NI	
	isorhamnetin	NI	NI	NI	NI	NI	NI	
	kaempferol	NI	NI	NI	NI	NI	NI	
	exudates	/	/	/	/	/	/	88 ± 2

aarly bauataria induction (0/)

Cytokinin triggers EHS formation in P. ramosa

Effect of exogenous treatments with cytokinins on EHS induction

cis/trans zeatin	c/tZ
trans zeatin	tZ
trans zeatin riboside	tZR
trans zeatin o glucoside	tZOG
trans zeatin o glucoside riboside	tZROG
dihydrozeatin	DHZ
dihydrozeatin riboside	DHZR
dihydrozeatin o glucoside	DHZOG
dihydrozeatin o glucoside riboside	DHZROG
isopentenyl adenine	IP
isopentenyl adenosine	IPR
meta-topolin	mT
kinetin	К
6-benzylaminopurine	BAP
thidiazuron	TDZ

TDZ, Thidiazuron

Cytokinin treatments induce EHS at the apex of *P. ramosa* radicle

Expression levels of cytokinin responsive genes (*PrRR5, PrCKX2* and *PrCKX4*)

Root exudates induce a cytokinin response patterns

Characterization of HIFs released by *Brassica napus* roots

 Fraction 9 co-eluted with different CK standards displaying EHS induction, including c/tZ, tZ, tZR, tZROG, DHZ, DHZR, and DHZROG

2 transitions of *m/z* 222 > 136 and 222 > 69 normally associated with dihydrozeatin (DHZ) were detected in fraction 9 at a retention time of 6.27 min

The active fraction 9 contains a CK which shares a dihydrozeatin (DHZ) structure

Haustorium initiation in the obligate parasitic plant *Phelipanche ramosa* involves a host-exudated cytokinin signal.

Goyet et al., 2017. Journal of Experimental Botany 68: 5539–5552.

Broomrape life cycle

Broomrape nutrition

Broomrapes : No chlorophyll and no functional roots

- Nitrogen (amino acids)
- Carbohydrates (sucrose)
- Water and minerals
- Growth regulators

Supernumerary sink organs

Texas Red-labeled dextrans: xylem-mobile markers (Aly *et al.*, 2011)

...but the trophic spoliation is mainly done *via* the phloem ("phloem-feeder") thanks to a strong sink strength

6-Carboxyfluorescein: a phloem-mobile marker (Péron, 2010)

Broomrapes are xylem-feeder...

de novo assembly of P. ramosa transcriptome

 de novo transcriptome assembly was used to design 60-mer probes and fixed on Agilent 4 X 180K microarray slides

• Transcriptome data and microarray design can be provided upon request

RESOROBANCHE Project (2015-2017)

Transcriptomic analysis of O. cumana – sunflower interaction

 Laboratory of Plant Biology and Pathology (LBPV, University of Nantes) - P Delavault

• Laboratory of Plant-Microbe Interactions (LIPM, UMR CNRS-INRA 2594/441; Toulouse) "Sunflower Genetics and Genomics" team - Stéphane Muños

Outputs

- Reference transcriptome of O. cumana (race F)
- Quantitative transcriptomic profiling during broomrape development
- Annotation of *O. cumana* genome sequence

P.R.O.M.O.S.O.L. ASSOCIATION POUR LA PROMOTION DE LA SÉLECTION DES PLANTES OLÉAGINEUSES

Orobanche cumana transcriptome

20 Samples (different stages and organs) - 3 repetitions for each

The HeliOr project

The complete genome sequence of *Orobanche cumana* (sunflower broomrape)

Jérôme Gouzy¹, Nicolas Pouilly¹, Marie-Claude Boniface¹, Olivier Bouchez², Sébastien Carrère¹, Olivier Catrice¹, Stéphane Cauet³, Clotilde Claudel⁴, Ludovic Cottret¹, Sébastien Faure⁴, Álvaro Calderón González⁵, Xavier Grand^{1,4}, Luyang Hu¹, Céline Jéziorski³, Ludovic Legrand¹, Johann Louarn¹, Nicolas Ribière⁴, Erika Sallet¹, Philippe Simier⁶, Leonardo Velasco Varo⁵, Cécile Donnadieu², Christophe Jestin⁷, Philippe Delavault⁶, Hélène Bergès³, Marie Coque⁴, Begoña Pérez-Vich⁵, <u>Stéphane Muños¹</u>

stephane.munos@inra.fr

1. Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France

- 2. GeT-PlaGe, Genotoul, INRA, Castanet-Tolosan, France
- 3. Centre National de Ressources Génomiques Végétales, INRA, Castanet-Tolosan,

France

4. Biogemma, Mondonville, France

- 5. Instituto de Agricultura Sostenible, CSIC, Córdoba, Spain
- 6. Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, France
 - 7. Terres Inovia, France

P.R.O.M.O.S.O.L. ASSOCIATION POUR LA PROMOTION DE LA SÉLECTION DES PLANTES OLÉAGINEUSES

miPEPiTO Project (2017-2019)

Use of miPEPs to control the sunflower - orobanche interaction

miPEP : miRNA-encoded peptide

 Laboratory of Plant Biology and Pathology (LBPV, University of Nantes) - P Delavault

Research Laboratory on Plant Sciences (LRSV, UMR 5546 UPS-CNRS; Toulouse) "Peptide and Small RNAs" team - JP Combier

- Laboratory of Plant-Microbe Interactions (LIPM, UMR CNRS-INRA 2594/441; Toulouse) "Sunflower Genetics and Genomics" team - Stéphane Muños
- MicroPEP Technologies (Toulouse) Thomas Laurent

Lauressergues *et al.* Primary transcripts of microRNAs encode regulatory peptides. *Nature* 2015, 520:90-3

- Species: Arabidopsis
- miRNA: miR165a
- miPEP: miPEP165a
- Target genes: PHAVOLUTA (PHV), PHABOLUSA (PHB), and REVOLUTA (REV) which are transcription factors regulating the formation of lateral roots

miR165a

miR165a*

Alignment of miPEP165a amino acid sequences of 7 species of Brassicaceae. At, Arabidopsis thaliana; Aly, Arabidopsis lyrata; Bn, Brassica napus; Bo, Brassica oleracea; Bc, Brassica carinata; Bj, Brassica juncea; Br, Brassica rapa.

Conclusion: It is possible to control the expression of a gene and thus a phenotype by simple application of a miPEP

miPEPiTO Project (2017-2019)

Use of miPEPs to control the sunflower - orobanche interaction

"The use of peptides (miPEPs) as natural molecules to modulate specific gene expression (without genetic transformation or mutation) both in the parasite and in the host plant for the biocontrol of *Orobanche, Phelipanche,* and *Striga* parasitism is a completely new and cutting-edge technology"

miPEPiTO project objectives

Belaen Céline Benharrat Hocine Brun Guillaume Delagrange Sabine Lemaitre Anne-Sophie Montiel Grégory Poulin Lucie Pouvreau Jean-Bernard Schmidt Johannes Simier Philippe Thoiron Séverine Tourneur Sabine Véronési Christophe

MINISTÈRE DE L'AGRICULTURE DE L'AGROALIMENTAIRE ET DE LA FORÊT

