

Agriculture Division of DowDuPont™

TOWARDS AN UNIVERSAL SET OF DIFFERENTIAL SUNFLOWER GENOTYPES FOR PRECISE BROOMRAPE RACE IDENTIFICATION

Alberto Martín-Sanz¹, Elena Muñíz¹, Enrique González¹, Sandra Rueda¹, Begoña Pérez-Vich², Leonardo Velasco²

¹ Pioneer Hi-Bred International, Seville, Spain.

² Institute for Sustainable Agriculture, CSIC, Córdoba, Spain

4th International Symposium on Broomrape, Bucharest, July 2-4, 2018

SUNFLOWER BROOMRAPE IS AN UNIQUE PARASITIC PLANT

BROOMRAPE RACIAL DISTRIBUTION

O. cumana populations are classified into physiological races using differentials mostly with qualitative resistance

Racial situation of sunflower broomrape is dynamic and becoming more complex

Race G+ populations (infect Or7 hybrids) are increasing in all Europe

Precise knowledge of the parasite and the plant-parasite interaction are essential concepts to develop strategies of durable resistance Martin-Sanz et al (2016); Velasco et al (2016)

BROOMRAPE-SUNFLOWER INTERACTION: PHYSIOLOGICAL RACES

<u>1980's</u>: races A to E were identified using five differential lines with monogenic dominan genes (*Or1* to *Or5*) (Vrânceanu et al (1980))

<u>1990's</u>: Broomrape populations overcoming *Or5* (race F) were identified in Spain, Romania, Bulgaria, Ukraine, Russia and Turkey (Molinero et al, 2015).

From <u>2000's</u> race G and H have been described in Black Sea area and recently in Spain and Morocco. Racial situation in these areas is unclear at this moment because the same races may differ in virulence (Molinero et al, 2015; Martin-Sanz et al, 2016; Nabloussi et al, 2018).

The aim of this study was to clarify this situation and proposed genotypes that allows precise identification of the different pathogenic races in the most important broomrape areas.

Table 2.	Proposal	for standardized	characterization and	d nomenclature	of Orobanche	cumana populations	using the coded tri-
olets syst	em, which	n is based on the	use of eight sunflow	er lines -termed	differentials-,	grouped into three se	ts

	Grou	ıp#1	Grou	ip # 2	Group # 3		
Population of O. cumana	Differentials	Value if susceptible reaction	Differentials	Value if susceptible reaction	Differentials	Value if susceptible reaction	
	AD66 (-)	1	Record (Or3)	1	LC1093 (Or6)	1	
	KA-41 (Or1)h	2	\$1358 (Or4)	2	P96 (Ors, Or6, Or7)	2	
	J8281 (Or2)	4	P1380 (Ors)	4		-	
Code ":	Total in group # 1		T	otal in group # 2	Total in group # 3		

* Each population is identified by a code of three digits which are obtained by totals due to susceptible reactions of each of the lines into the set. Resistant reactions impart 0. * Gene/s governing resistance in each line according to Vrânceanu et al. (1980), Akhtouch et al. (2002), Pacureanu et al. (2004), and Pérez-Vich et al. (2004).
Molinero et al (2015) Key differentials for races above E:

- Martín-Sanz et al (2016): P96, DEB2 and hybrids
- Molinero Ruíz et al (2014): P96 and L86
- Antonova et al (2014): P96 and VT62 (0r7)
- Shindrova & Penchov (2012): hybrids
- Burlov & Burlov (2010): inbred lines
- Pacureanu et al (2008, 2009): hybrids and inbreds (LC-1093)

PHENOTYPIC EXPERIMENTS

GENOTYPE	GENETICS	RESISTANCE
B117	No Or	None
S-1358	Or4 hom	A-D
NR5	Or5 hom	A-E
P96	Complex	A-F
Or7 inbred	Or7 hom	A-G
DEB2	Or_Deb2 hom	A-H
L86	Unknown	?
LC1093	Unknown	A-F
Hybrid 1	?	A-F
Hybrid 2	?	A-F
Hybrid 3	Or5Or7 het	A-G

Broomrape samples:

34 BR populations * 11 Sunflower genotypes * 13 reps = 4862 plants

Experiments were conducted on multi-pot trays with a pot volumen of 40cm3 with 0.28mg of seeds per g of soil Plants were grown during 55 days in a greenhouse at 25/20°C (day/night) with 14h of photoperid Susceptibility is is considered when % Sus > 50% and average nodules >2

DIFFERENTIAL			RESISTA	NCE-SUSC	EPTIBILITY I	PROFILE	•		
B117	None								
S-1358	A-D								
NR5	A-E								
P96	A-F								
Or7 inbred	A-G								
DEB2	A-H								
L86	?								
LC1093	A-F								
Hybrid 1	A-F								
Hybrid 2	A-F								
Hybrid 3	A-G								
RACE		E	F_CU	F	F-P96	G	G_GV	G+	н
Number of samples		4	1	3	6	4	3	8	5
	Hungary	Spain	Spain	Russia	Morocco	Spain	Bulgaria	Bulgaria	
	France		Bulgaria	Ukraine	Bulgaria	Russia	Russia	Ukraine	
COUNTRI	Spain			Greece	Turkey		Romania	Romania	
				Bulgaria			Turkey		

RESULS: identification 8 different pathogenic races

T	Proposed codes for O. cumana races											
Line of sunflower	100	300	700	710	730	770	771	773				
AD66	S ^a	s	S	S	S	S	s	S				
KA-41	R	s	S	s	S	S	S	s				
J8281	R	R	s	S	s	s	s	s				
Record	R	RNID	norReal	S	s	S	s	S				
S1358	K	R	ner car s	system	likein	downy	mildew	S				
P1380	R	R	R	R	K	e	S	S				
LC1093	R	R	R	R	R	R	S	S				
P96	R	R	R	R	R	R	R	S				
Historical race	А	в	С	D	Е	F	F or G?	F or G?				
* S: susceptible, R: resistant. Molinero et							al (2015					

It is needed to change the race nomenclature to be able to discriminate between the different pathotypes!!!

We proposed to change that differentials by those ones:

	B117	L86/LC1093B	Hybrid 3		
-	S1358	P96	Or7 inbred		
	NR5	Hybrid 1	DEB2		

BROOMRAPE RACE IDENTIFICATION PROPOSAL USING A NUMERICAL SYSTEM

				New race name								
			310	700	710	730	751	770	771	773		
D1	(+1)	B117										
D2	(+2)	S1358										
D3	(+4)	NR5										
D4	(+1)	L86										
D5	(+2)	P96										
D6	(+4)	Hybrid 1										
D7	(+1)	Hybrid 3										
D8	(+2)	Or7 inbred										
D9	(+4)	DEB2										
C	ld race	name	E	F_CU	F	F-P96	G_GV	G	G+	Н		
Nun	nber of	samples	4	1	3	6	3	4	8	5		
			Hungary	Spain	Spain	Russia	Spain	Morocco	Bulgaria	Bulgaria		
Countries		France		Bulgaria	Ukraine	Russia	Bulgaria	Russia	Ukraine			
		Spain			Bulgaria		Turkey	Romania	Romania			
						Greece			Turkey			

✓ Races 310, 710 and 770 would correspond to the classical races E, F and G, respectively

 \checkmark Races 730 and 751 are like variants of what has been called before race G

✓ Race 771 corresponds to the race G+, characterized by infecting *Or*7 gene in hybrids but not in inbreds.

✓ Race 773 is able infect all the genotypes except DEB2

CONCLUSIONS

- This study presented preliminar data about pathogenic diversity of several broomrape populations along European countries. Final results will be presented in the next Sunflower Conference
- Racial situation has become much more complex than it was until race E. Different "versions" of race F and G have been identified. In total, 8 races have been characterized of which 7 are above race E.
- A new system for broomrape race identification should be proposed to be able to cover the pathogenic diversity found in this study. The new system of differentials may include the inbred lines B117, L86, S-1358, NR5, P96, *Or7* line*, and DEB2*, and the hybrids 1* and 3*.
- We propose to use a system similar to downy mildew, as described before by Molinero-Ruiz at al (2015), but changing some of the differentials.

THANK YOU FOR YOUR ATTENTION!

