Seed Priming Studies for Improvement of Seed Quality and Field Performance in Sunflower (Helianthus annuus L.)

V.P. KALAPPA, MANMOHAN KAUR, K. SOMASEKHARA AND SREENIVASA REDDY

University of Agricultural Sciences, GKVK, Bangalore - 560 065, INDIA.

Abstract

Studies conducted to assess the effect of, seed priming treatments on seed quality, storability and field performance of two sunflower (Cv. Morden) seed lots having initial germination of 78 and 85 per cent respectively indicated that, seed priming with $Na_2H_2PO_4$ (0.5%), $N_2S_2O_3.5H_2O$ (1%), Mixtelol (5 ppm), GA3 (50 ppm) (0.5%),hydration-dehydration, significantly improved germination seedling vigour, storability of seeds and field performance in terms of field emergence, establishment, and speed of emergence in both seed lots over their control both under normal and moisture stress conditions. The effects were more conspicuous under stressed than normal condition. The low germinable seed lot showed greater response seed priming treatments. Considering comparative performance, seed priming with NaH2PO4, CoCl₂, Mixtelol, Na₂S₂O₃.5H₂O and GA₃ were found to be most promising.

Key words: Seed Priming, Seedling Vigour, Storability, Field Performance.

Introduction

The success of crop production depends on the of good quality seeds. Seed deterioration dur storage under tropical and subtropical climate considered as a serious limitation for supply of Seed deterioration is quality seed. defined as irreversible degenerative changes in the seed (ABDUL-BAKI 1972) and ANDERSON, which accompanied by several biochemical phenomena as degradation of various compounds, loss of membrane integrity, accumulation of inhibitors,

production of the fatty acids etc., leading to loss in vigour and viability of seed which inturn result field emergence, poor field stand performance. Several studies indicate that sowing or mid-storage seed treatment can improve seed storability even under less than condition (BASU, 1976) and also the germination performance of stored seed (BROCKLEHURST and DEARMAN, 1984). Relatively short duration hydration and dehydration treatments 12-24 hours of imbibition) have been reported to increase the vigour of the stored seed and/or extend longevity both under normal and adverse conditions rice, jute, sunflower, pulses and vegetable seeds (BASU, 1976) and wheat (RUDRAPAL and 1982).

beneficial effect of treatments have attributed to reduced lipase activity, lowered fatty acid (DAY and MUKHERJEE, 1986), lowered lipid peroxidation in treated seeds as compared to untreated. Sunflower being a second most important edible oil seed crop, there has been a increasing demand for quality seed. Being an oil seed crop, seeds get deteriorated at faster rate because free radical formation on lipid peroxidation which impairs the membrane stability. Thus a study conducted to improve the seed quality and storability by seed priming/invigouration treatments which is a technique accomplished by imbibing the seed in an osmotic/salt solution that allows the seed to imbibe water to a level permits some of the initial steps of germination to proceed but prevents radical emergence (HEYDEKAR, -1975).

Material and Methods

Two seed lots of sunflower (Cv. Morden) (L_1 and L_2) having a initial seed germination of 85 and 78 per cent were used for the study. The low germinable seed lot (L_2) seven months old (8% moisture) was first subjected to several seed priming treatments comprising of 24 inorganic salts and 12 growth regulators, compared with control and hydration-

dehydration treatments with standardised volume of water and time of soaking (1:1 for 12 hrs) for initial screening. The seeds were then dried under shade to the original moisture content (8%) for three days. The seeds were then subjected to laboratory test to record the various seed quality parameters like germination vigour mobilization efficiency using standard procedures. the results, ten promising priming were selected along with control and on the treatments hydration-dehydration to study the storability and field performance of high and low germinable seed The seeds were stored after treatment in cloth bags under ambient condition for months. Seeds were tested bimonthly for seed quality parameters to evaluate storability. Another set of primed seed of the same lots were sown in field during rainy season (1991) in 3 m x 1.5 m plots using Factorial RCBD with replications under normal (irrigated) and stressed condition. Observations on germination, vigour index, field emergence and speed of emergence (MAGUIRE, 1962) were recorded as per the standard procedure. The data was subjected to statistical analysis adopting "Fishers Analysis of Variance technique". Data in per cent were transformed into Arc Sin root transformation before analysis.

Results and Discussion

The data on the storability of primed seed germination (%) and vigour index is presented Table 1 and 2. The results infer that, all selected priming treatments improved germination percentage (15.05-4.48%) over their control in the initial stage with NaH2PO4 (0.5%), showing highest improvement. With increase in storage period there was a decrease in germination in both the seed lots. Seeds primed NaH2PO4 and hydration-dehydration treatments maintained their superiority over control, even after four months storage. While the other treatments responded negatively in both the seed lots. Similar improved germination during subsequent storage with NaHoPO4 in sunflower was

reported by BASU and DEY (1983) and DHARMALINGAM and BASU (1990).

Decline in vigour index was observed over the period of storage in both the seed lots. treatments with Mixtelol, NaH2PO4, hydrationdehydration and Na₂S₂O₃.5H₂O were found to retain superiority over untreated control. Substantial improvement in seed quality. observed with low germinable seed lot. increased vigour index was due to increased mobilization efficiency from the cotyledon to embryonic axis (data not presented) which was also observed by KATHIRESAN et al. (1984a).

The data on the field performance of primed seed in terms of field emergence and speed of emergence is presented in Table 3 and 4. The results of field germination followed the same trend as that laboratory germination with NaH₂PO₄, COU₁₂, Mixtelol, hydration-dehydration, Na₂S₂O₃.5H₂O showing better performance in terms of field emergence and establishment. However, consistency in response with different priming treatments was observed for different parameters under both normal and moisture stress conditions, although Na₂S₂O₃.5₂O and NaH₂PO₄ recorded highest field establishment (84.2%) under normal condition while GA3, KH2PO4 and CoCl2 recorded highest field establishment (77%) under stressed condition. Similar better field emergence and establishment were reported in okra with GA3 (OMRAN et al., 1980), in sunflower with NaH₂PO₄ (BASU and 1983), in carrot with Na2S2O3.5H2O (KUNDU and BASU, 1981).

Thus it can be concluded from the study that, all the seed priming treatments were found beneficial to improve the initial germination and seedling vigour of sunflowe,r although some priming treatments [(NH4)2 MoO4, MgSO4, KH2PO4, ZnSO4, proline] could not maintain the same during subsequent storage. Hydration-dehydration alone improved the germination over the control, but the additional beneficial effect of chemicals such as NaH2PO4, CoCl2, Mixtelol, GA3 and Na2S2O3.5H2O was

also observed on storability of seeds and improved field performance in both the seed lots. However, it was evident that seed priming was more beneficial with low germinable seed lot. The effects were more conspicuous under stressed than normal condition.

References

- ABDUL-BAKI, A.A. and ANDERSON, J.D., 1972, Physiological and biochemical deterioration of seeds. In: Kozlowski (ed.): Seed Biology II. Academic Press, New York and London, p. 283-30.
- BASU, R.N., 1976, Physico-chemical control of seed deterioration. <u>Seed Res.</u>, 4(1): 15-23.
- BASU, R.N. and Dey, G., 1983, Soaking and drying of stored sunflower seeds for maintaining viabi-lity, vigour of seedlings and yield potential. <u>Indian J. agric. Sci.</u>, 53(7): 563-569.
- BROCKLEHURST, P.A. and DEARMAN, J., 1984, A comparison of different chemicals for osmotic treatment of vegetable seed. <u>Ann. appl. Biol.</u>, 105: 391-398.
- DHARMALINGAM, C. AND BASU, R.N., 1990, Maintenance of viability and vigour in sunflower (Helianthus annuus L.). Seed Res., 18(1): 15-24.
- 'HEYDECKER, W., 1975. Seed priming the treatment of the future? Grower, 84: 554-555.
- KATHIRESAN, K., KALYANI, V. and GNANARETHINAM, J.L., 1984a. Effect of seed treatments on field emergence, early growth and some physiological processes of sunflower (Helianthus annuus L.). Field Crop Res., 9(3/4): 215-217.

- KUNDU, C. and BASU, R.N., 1981. Hydration-dehydration treatment of stored carrot seed for the maintenance of vigour, viability and producti-vity. Scientia Horticulturae, 15: 117-125.
- MAGUIRE, J.D., 1962, Speed of germination which acid in selection and evaluating for seedling emergence and vigour. <u>Crop Sci.</u>, 2: 176-177.
- RUDRAPAL, A.B. and BASU, R.N., 1982, Lipid peroxidation and membrane damage in deteriorating wheat and mustard seeds. <u>Indian</u> J. <u>Exp. Biol.</u>, 20: 465-470.

Table . . .): Germination percentage as influenced by seed tots and seed priming breatments during storage.

								MONTHS	MONTHS AFTER STORAGE	RMŒ						
			Initial	is] (O month)	æ)			?.	2 moniths					4 months		
Seed priming treatments		5	2	Wear	Per cent in germinat control	cent increase germination over control	-5	4	Mean	Per cent in germin co	cent increase germination over control	<u>ک</u> ،	2	Weam	Per cent increase in germination over control	r cent increase geomination over control
	×			•	1-1	raar S				-	L ₂ Mean	~			י, ר	inean. S
T, Untrested control	85			8.8			66.91	88.9 19.05	82.41 (38.6)	4	1	63.45	57.27 (07.07)	60.33 (75.50)	•	
1, Hydration-dehydration	\$ ~ \$			8.8 8.8 8.8	6.25	8. D 7.22	8.8 3.8	8 8 8 8	8.8 8.8	4.8	6.40 5.47	88 88	58.97 (02.57)	88.93 (78.33)		
T ₂ Amonium nolyboate	(D. (E)			8.8 8.3 8.3	<i>1</i> 2.00	8. D 9.72	8 8 8 8	8.8 8.5	•	-28.81	-22.64 -26.21	8.89 8.93 8.93	8.8 8.8	88.8 8.9	r,	۳,
T _A Cobalt chloride	(0.05%)			£ 8.8 8.8	8,73	16.06 12.09	8.8 8.8	88 88	88.8	7.20	5.55 0.81	88 88	61.2 (76.78)	8.8 8.8		
£ 7.	(50ppm) 7.			8 8 8 8	8.61	9.82 9.35	8.8 8.8	8.8 8.8	8 8 8 8	4.92	D.09 7.2	8.8 8.5	8.8 8.8	78.50 (7.50)	3.37 -7.63	32 -1.32
T _k Magnes full sulphate	(0.05%)			88	3.06	6.24 4.48	8. 8. 8. 8.	8.8 8.8	8.8 8.8	28.52	-28. 10 -23.92	8, 89 8, 83 8, 83	8 8 8 8 8 8	୫.୫ ଅନ୍ତ		•
T, Mixtelal	(Sppm) 7			§\$§ §\$§	7.91	M.20 10.72	8.6 6.8	8.8 8.8	8.9 6.9	-2.28	2.82 4.33	8.8 8.8 8.8	55.85 (55.83	ਲ ਲ ਲ ਲ	0.00 -20.73	
7. Potessium dinydrogen phosphate (0.5%)	(3) (3) (3) (3) (4) (4)			8 C 8	6.37	7.7 6.86	8,6	8.8	ឧទ	2.72	- 19.92 - 16.28	2.8 8.5	8.8	30 (8, 50	44. P -59.40	10 -51.65
T codium dihutmann phosolate.	(5.5%)			8.5 8.8	3.8	18.72 15.08	74.40	8 9 9 9 9	71.78	11.40	19.24 N.76	88	8.8	88.3	8.37 10.32	2 9.40
g minimum of the reserved to	5			(8.3) 2.5)	10.97	15.20 13.46	89. 18.83	8.8 8.8	8.8 8.8	8.	15.55 11.32	8.8 8.8 8.8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	39.85 13.85 15.85 15.85 15.85 15.85 15.85 15.85 15.85 15.85 15.85 15.85 15.85	0.87 -3.81	31 -1.19
I D Sodium un tossu primere				(8:0)	8		8,2 5,8	(8 (8 (8 (8 (8)		ξ. 75	77 -27 17	8.8 8.8	3.89	•	30.87 -82.73	3 46.2 2
Till Zinc sulphate	(0.0)			88. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	8:	8°° '''.	8 8 8 8	(8.3 (8.3 (8.3				(8:3) (8:3)	(% (%)			
T ₂ Proline	(M.0.0)	8.8 8.8 8.8	(80.03) (80.03)	88.89 8.83	4.72	6,24 5,48	86.33)	(07.97) (76.70)	(81.23)	2.40	4.8 3.3	8.8 8.83 8.83	(49.30)	49.47 (57.80)	6.75.	D -23.4 4
ne-eW		72.26 (90.70)	88.55 (82.90)	(8.91 (87.10)			64.26 (76.90)	58.99 (73.40)	61.62 (77.40)			57.56	47.35 (54. D)	52.46 (62.30)		
For comparing means of Seed joks (L.). Seed priming treatment (T).		0.325 0.737 0.737			OD at 5% 0.637 1.561 CV (%) 2 2.208	CV (%) 2.00	95m + 0.302 0.740 1.046		В	00 at 5% 0.592 1.450 (2.050	cv (x) = 2.08	SEM + 0.282 0.716 1.011		J	OD at 5% 0.572 1.401 CV ((%) = 2,36°
	•		-		-			90000	20,000	,						

Note: Figures in the parantheses indicate original values and without parantheses are Arc sin root transformed values

 L_1 = Lot 1 (High germinable seed lot) L_2 = Lot 2 (Low germinable seed lot)

Vigour index (Germination (%) x seedling length (cm)) as influenced by seed lots and seed priming treatments during storage

	. !				A CHINON	FIORITHS AFTER STORAGE	AGE			
		Initi	Initial (O months)	ntňs)	2 "	months		4 =	4 months	
(ב) בפנים לו הפניונים (ב)		L	ب کم	Mean	7	L ₂	Mean	5	L ₁ L ₂	Nean
Untreated control		1627.62	1068.16	1347.69	1502.93	913.64	1208.28	1154.50	1668.16 1347.69 1502.93 913.64 1208.28 1154.50 806.86 980.68	980.68
Hydration-dehydration	o	1917.90		1316.76 1617,33 1706.78 1205.02 1455.90	1706.78	1205.02	1455.90	1328.84	1328.84 971.09 1149.96	1149.96
Anmonius solybdate	(21.0)	(0.1%) 2055.40	1744.82	1744.82 1900.11 1014.48	10 14.48	885.71	885.71 950.10	506.30	308.10	407.20
Cobalt crioride	(0.05%)	2276.26	1940.96	(0.05%) 2276.26 1940.96 2108.61 1920.73 1676.33 1798.53	1920.73	1676.33	1798.53		1398.70 1009.60	1204. 15
GA ₃	(50ppm)	2303.06	1889,68	(50ppm) 2303.06 1889.68 2096.37 2002.53 1738.36 1870.45	2002.53	1738.36	1870.45		1472.29 893.42	1177.86
Magnesium sulphate	(0.05%)	1849.18	1706.66	(0.05%) 1849.18 1706.66 1777.92 1332.00 837.16 1084.53 800.40 294.53	1332.00	837. 16	1084.53	800.40	294.53	547.47
Kixtelal	(5ppm)	2363.56	2044.56	(5ppm) 2363.56 2044.56 2204.06 1862.33 1808.63 1835.48 1363.16 770.50	1862.33	1808.63	1835.48	1363.16	770.50	1066.88
Potassium dihydrogen phosphate (0.5%) 1964.85 1744.73 1854.79 1474.90	(0.5%)	1964,85	1744.73	1854,79	1474.90	1099.86	1099.86 1287.38		611,62 335,42	473.52
Sodium dihydrogen phosphate	(0.5%)	2362.21	2 187.26	(0.5%) 2362.21 2187.26 2274.74	1993.33	1785.46 1889.40	1889.40	982.40 1036.87	1036.87	1009.63
T ₁₀ Sodium thiosulphate	(1.0%)	22 10.88	1892, 15	(1.0%) 2210.88 1892.15 2051.51 1915.50 1760.80 1808.15	19 15.50	1760.80	1808. 15	1243.88 867.20	867.20	1055.54
I I Zinc sulphate	(2(0.0)	1970.02	1629.11	(0.01%) 1970.02 1629.11 1799.57 1246.36	1246.36		978.71 1112.54	781.37 281.45	281.45	531.41
T ₁₂ Proline	(ML 0.0)	1958.00	1687.78	(0.01M) 1958.00 1687.78 1822.89 1694.13 1461.63 1577.38 1065.06 613.86	1694. 13	1461.63	1577.38	1065.06	613.86	839.46
Mean		2071.58	2071.58 1737.72 1904.65	1904.65	1638.83	1638.83 1340.94 1489.89	1489.89	1059.04 681.58	681.58	870.31
For comparing means of Seed lots (L)		S.Em + (17.262	S.Em + CD at 5% 17.262 33.834	2.834 3.834 2.43, 2.63	S.Em + (16.446	S.Em + CD at 5% 16.446 32.23	63	S.Em + Cl 38.060	S.Em + CD at 5% 38.060 74.598	9
Seed priming treatment (T) Interaction (LXI)		42.28¢ 59.798	3.		40.285 56.97.1	78.958	78.958 11.663	93.228	182.726 182.726 115	18.33

3 .: Field emengence (%) as influenced by field conditions, seed lots and seed priming treatments Tab le

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Field c	condition/seed lots	seed lots	(CXLXT)	1 1 1 1 1 1 1 2 2	Mean	(LXT)	Mean ((CXI)
Seed priming treatments (1)	۲ ، د	ا لئ	د ا	2 L ₂	Mean (T)	۲,	ار2	ری	, _C ,
T, Untreated control			57.63					60.82	53.61
, T ₂ Hydration-dehydration			55.55			61.25	56.90	63.81	54.34
T_3 Ammonium molybdate (0.1%)			49.99 (58.60)					50.42	48.84
			61.58					65.62 (83.00)	58.99 (73.40)
			62.04					62.51	60.91 (76.40)
esium sulphate			56.81					56.14 (68.90)	51.48
			62.49					61.37	57.22 (70.70)
$T_{\rm B}$ Potassium dihydrogen phosphate.(0.5%)			59.35					58.09	54.48 (66.30)
gen phosphate.			64.96					63.43	60.46
phate			58.95					66.37	57.87
T ₁₁ Zinc sulphate (0.01%)			56.39					60.70	52.03
•	(72.70)	(66.70)	55.96 (68.70)	53. 13 (64.00)	55.58 (68.00)		53.93 (65.30)	56.62.	54.54 (66.40)
Мезп	63.91	57.07	58.48 (72.7J)	52.32 (62,60)		61.19	54.70 (66.60)	60.49 (75.70)	55.40 (67.80)
For comparing means of Field conditions (C) Seed lots (L) Seed priming treatment (T)	S.Em + 0.208 0.208 0.509	C. D	0.576 0.576 0.576 1.410 NS	·					
CXLXT CXL	0.720 0.720 1.018		1.994 CV 1.994 2.820	(x) = 3.04	_			к	
	,								

Figure in parantheses indicate original values and without parantheses are Arc sin root transformed values.

e: NS = Non significant Cl = Normal field condition Cl = Stress field condition L2 = Lot l (High germinable seed lot) L3 = Lot 2 (Low germinable seed lot)

Table . 4. is Speed of emergence as influenced by field conditions, seed lots and seed priming treatments

S5.33 51.33 43.00 22:33 43.00 49.16 36.83 53.33 S5.03 51.33 43.00 22:33 43.00 49.16 36.83 53.33 S0.00 32.66 27.66 23.66 33.50 39.83 28.16 41.33 S0.00 32.66 52.00 27.66 33.25 39.83 30.65 39.16 S0.00 32.66 52.00 49.66 39.66 45.83 58.16 51.50 65.33 S5.33 44.33 44.33 47.66 52.25 58.06 45.83 59.18 S5.33 44.33 44.33 47.00 28.33 47.66 51.50 43.83 59.33 48.83 S5.20 55.66 45.33 24.00 42.91 54.00 31.83 51.66 3 S5.21 65.52 45.22 31.75 52.25 38.63 52.40 3 S5.22 45.22 31.75 52.25 38.63 52.40 3 S5.22 45.52 45.22 31.75 52.25 38.63 52.40 3 S5.22 45.52 45.52 31.75 52.25 38.63 52.40 3 S5.22 45.52 45.22 31.75 52.25 38.63 52.40 3 S5.24 50.34 50.38 50.38 50.38 50.38 50.38 50.38 50.38 50.38 S5.24 50.38 50.38 50.38 50.38 50.38 50.38 50.38 50.38 50.38 S5.24 50.38 50.3			Fie 1d	condition	Field condition/seed lots (CXLXT)	(CXLXT)		Мезп	(LXT)	Mean	Mean (CXT)
Intreated control 55.33 51.33 41.00 22;33 43.00 49.16 36.83 53.33 Mornal unablydrate (0.1x) 44.66 33.66 22.66 23.66 33.56 33.56 33.56 33.80 38.83 28.16 41.33 Mornal unablydrate (0.05x) 67.66 52.00 49.66 39.66 22.25 58.66 45.83 59.83 5	Seed priming treatments (T)			:	,		Жезп (Т)	<u></u>	ار2	5	25
Hydration-debydration 50.00 32.66 23.66 33.50 39.35 39.35 39.35 39.16 39.16 20.13	I Untreated control		55.33	51.33	43.00	22:33	43.00	49.16	36.83	53.33	32.66
Cobalt chloride (0.12) 4.66 33.66 35.00 27.66 35.25 39.83 30.66 39.16 Cobalt chloride (0.052) 67.66 52.00 49.66 33.66 52.25 58.66 45.83 59.18 59.18 33 (50ppm) 64.00 66.66 52.03 36.33 54.83 58.16 51.50 65.33 490est tum sulphate (0.0256)57.07 25.66 43.23 25.33 47.66 51.50 43.83 56.16 41.33 15txelal (5ppm) 53.66 55.33 47.00 28.33 47.66 51.50 48.83 53.30 45.33 45.50 48.83 36.33 48.83 36.33 48.83 36.33 48.83 36.30 48.83 36.16 51.00 46.83 36.30 48.83 36.10 48.83 36.10 48.83 36.10 48.83 36.10 48.83 36.10 48.83 36.10 48.83 36.10 48.83 36.20 48.83			50.00	32.66	27.66	23.66	33.50	38.83	28. 16	41.33	25.66
Cobalt chloride (0.05x) 67.66 \$2.00 49.66 \$9.65 \$2.25 \$8.66 45.83 \$9.83 Shy (50pm) 64.00 66.66 \$2.33 \$36.33 \$4.83 \$6.15 \$1.50 65.33 Agones tun sulphate (0.05x) 53.05 \$5.33 49.33 \$2.33 \$47.66 \$1.50 43.83 \$4.50 The sulphate (0.5x) 75.66 45.33 \$4.33 \$4.35 \$5.16 \$1.50 43.83 \$4.83 The sulphate (0.01x) 65.00 \$3.66 \$4.33 \$4.00 \$2.41 \$6.50 \$48.33 \$9.33 \$4.00 The sulphate (0.01x) 65.00 \$3.66 \$4.33 \$4.00 \$42.91 \$6.00 \$48.33 \$9.33 \$4.00 The sulphate (0.01x) 65.00 \$3.66 \$4.33 \$4.00 \$42.91 \$6.00 \$1.83 \$9.33 \$4.00 The sulphate (0.01x) 65.00 \$3.66 \$4.33 \$4.00 \$42.91 \$6.00 \$1.83 \$9.33 \$1.66 \$1.60 The sulphate (0.01x) 60.33 \$4.00 \$42.91 \$6.00 \$1.83 \$1.66 \$1.60 The sulphate (0.01x) 60.33 \$4.00 \$4.33 \$4.00 \$4.29 \$1.83 \$1.60 \$1.60 The sulphate (0.01x) 60.34 \$0.953 \$4.00 \$4.00 \$1.00 \$1.83 \$1.60 \$1.60 The sulphate (0.01x) 60.34 \$0.953 \$4.00 \$4.00 \$1.00 \$1.83 \$1.60 \$1.60 The sulphate (0.01x) 60.34 \$0.953 \$4.00 \$4.00 \$1.00 \$1.83 \$1.60 \$1.60 The sulphate (0.01x) 60.34 \$0.953 \$4.00 \$4.00 \$1.00 \$1.83 \$1.60 \$1.60 The sulphate (0.01x) 60.34 \$1.00 \$1		(0. 1x)	44.66	33.66	35.00	27.66	35.25	39.83	30.66	39.16	31.33
Hydrogen phosphate (O.CER) 57.07 25.66 43.33 25.33 36.16 51.50 65.33 44.84 49.13 25.33 37.83 50.16 25.50 41.33 41.424 togen phosphate (O.CER) 53.33 44.33 47.00 28.33 47.66 51.50 43.83 54.50 obtass: tum dihydrogen phosphate (O.SX) 53.33 44.33 47.00 28.33 47.66 51.50 43.83 54.50 obtass: tum dihydrogen phosphate (O.SX) 76.66 45.33 53.66 37.66 53.33 65.16 41.50 61.00 obtain thiosulphate (O.OIX) 63.66 39.66 44.33 24.00 42.91 54.00 31.83 51.66 conditions (C) 0.01X 63.66 39.66 44.33 24.00 42.91 54.00 31.83 51.66 conditions (C) 0.344 0.953 46.00 49.33 40.66 49.08 54.83 43.33 53.16 together (O.OIX) 60.344 0.953 46.69 49.08 54.83 43.33 52.40 30.94 0.953 conductions (C) 0.344 0.953 46.69 49.08 54.83 43.33 52.40 31.83 53.16 together (O.OIX) 60.344 0.953 46.69 49.08 54.83 43.33 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 54.00 57.41 57.	I ₄ Cobalt chloride	(0.05%)	99.79	52.00	49.66	39.66	52.25	58.66	45.83	59.83	44.66
### ### ### ### ### #### #### ### ######		(20ppm)	64.00	99.99	52.33	36.33	54.83	58. 16	51.50	65.33	44.33
1,5ppm 53.66 55.33 49.33 32.33 47.66 51.50 43.83 54.50 1,5ppm 53.66 55.33 49.33 32.33 47.66 51.50 1,0th	T ₆ Magnesium sulphate	0.03%)57.07	25.66	43.33	25.33	37.83	50.16	25.50	41.33	34.33
odd with dividing en phosphate (0.5%) 53.33 44.33 47.00 28.33 43.25 50.16 36.33 48.83 sod lum dihydrogen phosphate (0.5%) 76.66 45.33 53.66 37.66 53.33 65.16 41.50 61.00 sod lum dihydrogen phosphate (1.0%) 65.00 53.66 44.33 24.00 42.91 56.00 31.83 51.66 son lum thiosulphate (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 son lum thiosulphate (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 son lum thiosulphate (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 son lum thiosulphate (1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	T ₇ Mixtelal	(mddç)	53.66	55.33	49.33	32.33	47.66	51.50	43.83	54.50	40.83
Sodium dihydrogen phosphate (0.5%) 76:66 45.33 53.66 53.33 65.16 41.50 61.00 Sodium thiosulphate (1.0%) 65.00 53.66 48.00 43.00 52.41 56.50 48.33 59.33 Inc sulphate (0.01%) 63.66 39.66 44.33 24.00 42.91 54.00 31.83 51.66 Frol ine (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Frol ine (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Frol ine (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Frol ine (0.01%) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Frol ine (0.01%) 60.33 46.00 49.33 46.60 52.25 38.63 52.40 Frol ine (0.01%) 60.34 60.34 60.953 60.94 60.953 <td< td=""><td></td><td>te (0.5%)</td><td>53.33</td><td>44.33</td><td>47.00</td><td>28.33</td><td>43.25</td><td>50.16</td><td>36.33</td><td>48.83</td><td>37.66</td></td<>		te (0.5%)	53.33	44.33	47.00	28.33	43.25	50.16	36.33	48.83	37.66
ind thiosulphate (1.0x) 65.00 53.66 48.00 43.00 52.41 56.50 48.33 59.33. Find sulphate (0.01x) 63.66 39.66 44.33 24.00 42.91 54.00 31.83 51.66 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 52.40 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.34 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.34 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.34 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.34 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.34 60.34 60.34 60.34 60.34 60.34 60.34 60.60 49.33 40.66 49.08 54.83 43.33 53.16 Froline (0.01x) 60.34 60.34 60.34 60.34 60.34 60.34 60.34 60.34 60.60 49.34 60.34 60.60 49.34 60.34 6	Tg Sodium dihydrogen phosphate	(0.5%)	.99:92	45.33	53.66	37.66	53.33	65. 16	41.50	61.00	45.66
Inc sulphate (0.01%) 63.66 39.66 44.33 24.00 42.91 54.00 31.83 51.66	In Sodium thiosulphate	(1.0%)	00.59	53.66	48.00	43.00	\$2.41	56.50	48.33	59.33.	45.50
roline (0.0 lM) 60.33 46.00 49.33 40.66 49.08 54.83 43.33 53.16 ean Search Comparing means of S.Em + C.D. at 5x 0.953 comparing means of S.Em + C.D. at 5x 0.953 teld conditions (C) 0.344 0.953 x.	T _{ll} Zinc sulphate	(2(0.0)	63.66	39.66	44.33	24.00	42.91	54.00	31.83	51.66	34.16
Gand 59.27 45.52 31.75 52.25 38.63 52.40 SE m + CD. at 5x C.D. at 5x 0.953 0.953 0.953 0.344 0.953 0.953 0.344 0.953 0.953 0.344 0.953 0.344 0.953 0.342 0.334 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.344 0.953 0.953 0.344 0.953 0.942 0.842 </td <td>r₁₂ Proline</td> <td>(ML 0.0)</td> <td>60,33</td> <td>46.00</td> <td>49.33</td> <td>40.66</td> <td>49.08</td> <td>54.83</td> <td>43,33</td> <td>53.16</td> <td>45.00</td>	r ₁₂ Proline	(ML 0.0)	60,33	46.00	49.33	40.66	49.08	54.83	43,33	53.16	45.00
teld conditions (C)	Меэп	* * * * * * * * * * * * * * * * * * *	59.27	45.52	45.22	31.75		52.25	38.63	52.40	38.48
eed lots (L) eed priming treatment (T) N. M.		x x x x x x x x x x x x x x x x x x x	S.Em +	C. D		• • • • • • • • • • • • • • • • • • •					
XX. XX. XX. XX. XX. 1. 191 3.30 CV (%) XX. XX. XX. XX. XX. XX. XX. XX	. •		0.344		0.953						
XI XI 1.191 3.301 CV (\$\pi\$) XLXT 1.685 4.669 NS = Non significant C_1 = Normal field condition C_2 = Stress field condition L_2 = Lot 1 (High germinable seed lot) L_3 = Lot 2 (Low germinable seed lot)	ס שרושות בהיהפיני (0.842		2.334 NS		*				-
NLXT NS = Non significant C ₁ = Normal field condition C ₂ = Stress field condition L ₁ = Lot 1 (High germinable seed lot) L ₂ = Lot 2 (Low germinable seed lot)	CXI		1.191		3.301 CV		•				
NS = Non significant C ₁ = Normal field condition C ₂ = Stress field condition L ₁ = Lot 1 (High germinable seed L ₂ = Lot 2 (Low germinable seed	כאראנ		1.685		4.669						٠
(Hign germinable seed (Low germinable seed	NS = Non s C ₁ = Norma C ₂ = Stres	 	† 1 1 1 1 1 1	1 0 1 1 1 5 2		; ; ; ; ; ; ; ;			i i i i	6 6 7 8 8 8 8	
	Ly = Lot 2 (Low germinab)	seed	~~	1				*	¥ °		