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Summary 

In Argentina, sunflower is grown on almost four million hectares, including subtropical 

(northern) and temperate (central and southern) environments. The environments in which 

hybrids are evaluated can substantially complicate selection due to large genotype × 

environment (G×E) interactions. For this analysis, we have separated, a priori, N and C 

environments. The spatial and seasonal differences between both regions are investigated 

through two complementary approaches: (i) a trial dataset, comprising 68 trials, covering 8 

years (Y) and 18 locations (L), was analyzed to quantify genotypic, environmental, and G×E 

variance components for grain yield, oil content and oil yield, and (ii) ordination analysis was 

applied to a long-term environmental data record, in order to group environments based on the 

mean value of each variable for the different crop stages. 

Analysis of locations over years within regions detected that 83% (C region) and 86% 

(N region) of the total G×E interaction for oil yield was attributable to G×L×Y, respectively. 

To achieve repeatabilities of more than 80%, trials would need to be conducted over at least 5 

years and 15 locations per year. 

Ordination analysis of environmental data separates N and C environments over both 

years and locations. On average, N environments show shorter photoperiods, less rainfall and 

lower temperatures during vegetative stages, shorter photoperiods during flowering and 

higher maximum and minimum temperatures during grain filling. Environmental differences 

between regions showed a strong degree of repeatability, suggesting that crop mean yields 

differences and G×E interactions associated to the evaluated attributes would be highly 

repeatable. 

 

 



Introduction 

 

The formulation of operational decisions in plant breeding requires knowledge of those 

environmental factors limiting phenotypic expression and of the nature and magnitude of such 

genotype × environment (G×E) interactions as do occur (Boyd et al., 1976). In Argentina, 

sunflower is grown on almost four million hectares, including subtropical (northern) and 

temperate (central and southern) environments. Within this target population of environments 

(TPE), genotype × environment (G×E) interactions complicate effective identification of 

superior genotypes and make it difficult to ensure that a multi-environment trial to test new 

and current hybrids across a small number of locations and years will adequately sample the 

existing production TPE. However, a portion of these GE interactions may be repeatable and 

able to be either controlled or sampled in a stratified manner. Knowledge of the production 

factors that are responsible for repeatable G×E interactions can lead to the definition of target 

environments for breeding and selection (Chapman et al., 2000).  

For the analyses described in this paper, we have separated, a priori, subtropical (N) 

and temperate (C) sunflower growing environments. The spatial and seasonal differences 

between both regions were investigated through two complementary approaches: (i) a trial 

dataset was analyzed to quantify genotypic (G), environmental (E), and G×E effects for grain 

yield, oil content and oil yield, and (ii) principal component analysis (PCA) was applied to a 

long-term environmental data record, in order to group environments based on the value of 

each environmental variable for the different crop stages. Our objective was to determine how 

the relative sizes of genotypic and G×E variance components differ across seasons, locations 

and regions, to detect differences between regions over years for some environmental 

variables, and to determine, based on both approaches, to what extent G×E interactions 

between C and N regions are expected to be repeatable. 

   

Materials and Methods 
 

Trial Dataset, data processing and variance component analysis  

A trial dataset from the Advanta Argentina sunflower breeding program was analyzed to 

quantify genotypic (G), environmental (E), and G×E effects for grain yield (kg ha
-1

), oil 

content (%) and oil yield (kg ha
-1

). The dataset comprises 68 advanced trials, covering 8 years 

(Y) and 18 locations (L) of northern (N), central (C), and southern (S) regions of Argentina, 

with the entries being current industry hybrids or experimental hybrids that were being 

considered for release. The 8 years were seasons 1991/92 to 1998/99. All trials were RCBD or 

lattice designs, with 3-4 reps and 25-49 entries. Experimental units consisted of plots of 3-4 

rows × 6 m long and inter-row spacing of 0.70 m. All yield data is presented at 11% grain 

moisture. Within years, the same hybrids were grown in all locations within the N or within 

the C and the S region, and some hybrids were common across all trials. The proportion of 

hybrids common to all regions in each year varied between 0.12 and 0.43.  

 The data for grain yield, oil content and oil yield were analyzed separately. The total 

number of plots used was 9150. The hybrid means were processed by a residual maximum 

likelihood method (Patterson and Thompson,  1975) using the ASREML software (Gilmour et 

al., 1995) to estimate the genotypic components of variance, assuming genotypes (g) in any 

season to be a random sample of the current hybrids. As different ‘sets’ of hybrids were tested 

in the two regions, we had to analyze these separately. Locations (l) and years (y) were 

assumed to be fixed. Within each region, an estimate of phenotypic variance (
2

p) was 

calculated using the variance components from the ASREML analyses: 
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where l, y and r were any given number of locations, years and replicates, respectively. 

Several sets of values were used for l, y and r to compare different testing strategies. For each 

of these combinations, heritability (h
2
) was estimated as the ratio: 

 

h
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Environmental Dataset, data processing and principal component analysis 

The long-term environmental data used in this study was obtained from I.N.T.A. (Instituto 

Nacional de Tecnología Agropecuaria, Argentina) and from Advanta Argentina. This is 

comprised of 8 years (90-97) of monthly average rainfall data in 10 locations, 6 years (90-91, 

93-95, 97) of monthly average daily maximum and minimum temperature data in 9 locations 

and monthly average daily photoperiod data in 9 locations. Environmental data was computed 

for each year and location based on crop phases: pre-planting (P), sowing (S), vegetative 

period (V), flowering (F) and grain filling (G). Crop phases were monthly based and defined 

as follows: for the N environments: P (May, Jun, Jul), S (Aug), V (Sep, Oct), F (Nov), G 

(Dec); for the C environments: P (Jul, Aug, Sep), S (Oct), V (Nov, Dec), F (Jan), G (Feb). 

Rainfall was the only variable analyzed in crop phase P.  

Principal component analysis (PCA) was applied to the trial environment × crop stage 

matrices of monthly mean data of daily photoperiod, rainfall and daily maximum and 

minimum temperatures, in order to investigate the interrelations between environments and 

environmental variables for each crop stage. The principal components (PCs) of the squared 

Euclidean distance matrix of each environmental variable were estimated using a singular 

value decomposition procedure (Gabriel, 1971). A biplot of the first two PCs for each weather 

variable was constructed from this analysis (Gabriel, 1971).  

   

Results  

 

Trial dataset 

Analysis of locations over years within regions showed that 83% (C region) and 86% (N 

region) of the total G×E interaction for oil yield was attributable to G×L×Y (Table 1), 

respectively (Table 1). This variance component (
2

gly) was 5.7 and 5.4 times larger than 
2

g 
 

Table 1. Variance components and standard errors derived from the genotype (g), locations (l) and years (y) 

model applied to the sunflower hybrid trial dataset from Advanta Semillas  
 

 Grain yield Oil content Oil yield 

Source Variance 

component 

(kg ha-1)2 

% g Standard 

error  

Variance 

component 

(%)2 

% g Standard 

error 

Variance 

component 

(kg ha-1)2 

% g Standard 

error 

Northern region         

g 11177 100 4544 5.318 100 0.749 2286 100 1039 

g.l 4025 36 5919 0.587 11 0.226 495 22 1546 

g.y 7726 69 4890 0.762 14 0.225 1555 68 1275 

g.l.y 39574 354 7439 1.096 21 0.222 12411 543 2065 

Rep. 4689 42 1421 0.172 3 0.044 1304 57 380 

Residual 97141 869 3143 1.897 36 0.061 24282 1062 786 

Central region         

g 24986 100 5432 4.341 100 0.547 3590 100 1129 

g.l 1766 7 3840 0.028 1 0.046 660 18 1048 

g.y 8757 35 3517 0.326 8 0.069 3503 98 1049 

g.l.y 72901 292 6147 0.942 22 0.071 20386 568 1649 

Rep. 17802 71 3208 0.223 5 0.038 4583 128 821 

Residual 176682 707 4058 1.640 38 0.038 44331 1235 1018 



within C and N regions, respectively. Several sets of values were used for l, y and r to 

compare different testing strategies, utilizing the variance components of ASREML analysis 

to estimate h
2
. For a testing program of 5 locations over 3 years, for example, we estimated h

2
 

of 0.57 and 0.61 for oil yield within the C and N regions, respectively. To achieve 

repeatabilities of more than 80%, trials would need to be conducted over at least 5 years and 

15 locations per year. Oil content was the attribute that showed the largest h
2
. To achieve 

repeatabilities of more than 80% for this trait, a testing regime of three locations over one year 

would be sufficient.  

 

Environmental attributes  

The results of the ordination analysis are presented in biplots of the 1
st
 and 2

nd
 PCs (Figure 1). 

Environments that are close together show similar values for each environmental variable in 

each crop stage. For any particular crop stage, environments can be compared by projecting a 

perpendicular from the environment markers to the crop stage vector, i.e. environments that 

are further along in the positive direction of the vector showed higher values for the analyzed 

environmental variable and vice versa (Kroonenberg, 1997). Acute angles between any crop 

stage vectors indicate positive associations, i.e. they discriminate among environments for a 

particular environmental variable in a similar manner; 90º angles indicate no association; and 

angles greater than 90º indicate negative associations (Kroonenberg, 1997).  

 The 1
st
 and the 2

nd
 PCs for photoperiod accounted for the 100% of the total variation 

of the crop stage-environment system analyzed (Figure 1A). Crop stages S and V showed 

higher values for the 1
st
 PC and lower values for the 2

nd
 PC than F and G. The 1

st
 PC (97% of 

the variation) largely reflects the photoperiod values for the months of S and V, with the 

environments that showed the highest values for this attribute at the right half of the diagram 

(C environments) and the environments that showed the lowest values for this attribute 

located at the left side of the biplot (N environments). The variation explained by the 2
nd

 PC is 

too small to warrant discussion. 

 The first two PCs for rainfall accounted for 73% of the total variation (Figure 1B). The 

vector of crop stage G showed a high score for the 1
st
 PC (47% of the variation), which 

separates the environments that showed the highest rainfall during G at the right half of the 

diagram and vice versa. The vector of crop stage S showed a strong negative association with 

the vector of G (i.e. they form an almost 180º angle between them). The 1
st
 PC clearly 

separates N environments, with more rainfall for G and less rainfall for stage S, from C 

environments. Crop stages V and F showed a strong positive association between them and 

lack of association with S and G (orthogonal vectors). The vectors of crop stages V and F 

showed high scores for the 2
nd

 PC (26% of the variation), which separates the environments 

that showed the highest rainfall during V and F, at the bottom half of the diagram, from the 

environments that showed the lowest values of rainfall during these crop stages, located at the 

top of this biplot. This PC does not appear to discriminate between C and N environments.

 The 1
st
 and the 2

nd
 PCs for maximum temperatures accounted for 77% of the variation 

(Figure 1C). The vectors of crop stages V and G strongly discriminated between C and N 

environments. The vector of V showed high scores for the 1
st
  PC (49% of the variation) and 

the 2
nd

 PC (28% of the variation). Environments that showed the highest maximum 

temperatures during V associated positively with this vector and tend to be at the bottom left 

quadrant of this diagram. The vector of crop stage G showed a high score for the 2
nd

 PC, 

which separates the environments that showed the highest values for maximum temperature 

during grain filling at the top half of this biplot and vice versa. The angle between the vectors 

of V and G is larger than 90º, indicating the existence of a negative association between these 

crop stages in the way they discriminate among environments for maximum temperatures.  
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Discussion 

 

The variable and unpredictable nature of much of the G×E interaction within N and C regions 

implies that broad adaptation within each region is required. Considering the low 

repeatabilities estimated for oil yield, a large sample of environments is needed to identify 

Figure 1. Biplots of the 1
st
 and 2

nd
 principal components for photoperiod (A), rainfall (B), maximum temperature 

(C), and minimum temperature (D) of several years (numerals) of testing environments from the central (C) and 

northern (N) sunflower growing regions of Argentina and four crop stages [P: pre-planting (3 months), S: sowing 

(1 month), V: vegetative stage (2 months), F: flowering (1 month), G: grain filling (1 month)]. Environments are 

only identified by region and year 

For minimum temperature (Figure 1D), only the vector of crop stage G, which showed a very 

high score for the 1
st
 PC (50% of the variation) and the best fit to the first two PCs (85% of 

the variation), clearly discriminated between regions. N environments tended to be positively 

associated with this vector and with the 1
st
 PC and showed the highest values of minimum 

temperatures during grain filling. The crop stage vectors of S, V and F showed positive 

association among them, lack of association with G and high scores for the 2
nd

  PC (35% of 

the variation). 



superior hybrids and testing across locations and years are equally important. To sample the 

TPE with as few trials as possible, the objective should be to ensure that the frequencies of 

occurrence of different ‘types’ of environments match those being experienced in the TPE 

(Chapman et al., 2000). One alternative approach would be to classify testing environments as 

members of different ‘environment types’ and weight their results to account for the mismatch 

with the TPE (Fox and Rosielle, 1982; Basford and Cooper, 1998). This classification could 

be direct, utilizing environmental indices (e.g. Woodruff, 1981), o indirect, utilizing the 

relative responses of a reference set of genotypes (e.g. Fox and Rosielle, 1982). 

In general, N environments had shorter photoperiods until grain filling, less rainfall 

and lower temperatures during the vegetative stages and higher temperatures and more 

rainfall during grain filling than the C environments. Rainfall is the environmental attribute 

that showed the highest seasonal and spatial variability. Lack of radiation data precluded an 

exploration of the effects of this variable, which should be included in future analyses. For all 

analyzed variables, N environments showed a larger spatial and seasonal variability, whereby 

the sets of environment points of this region showed a larger dispersion in the biplots than the 

C environments. This suggest that mean yield variability and G×E interactions associated to 

the variation for these variables would be relatively larger within the N region. Environmental 

differences between C and N regions showed a strong degree of repeatability, whereby there 

is almost no overlapping between the areas of environment distribution of C and N regions in 

the biplots of the four attributes analyzed. This suggests that the environmental differences 

between C and N regions associated with the effect of these four variables on crop mean 

yields and G×E interactions would be highly repeatable. Assessing a reference set of 

genotypes in C and N locations is a reliable strategy to achieve a better environmental 

grouping definition and to define the best alternatives to deal with the current G×E 

interactions. This is the aim of a companion paper (de la Vega et al., 2000). 
 

Acknowledgments 
 

We would like to thank Advanta Semillas (Ariel Lorenzo, Ricardo Siciliano, Alan Scott) for making this 

research possible. We also thank Aldo Martínez, Sergio Solián, Daniel Kennedy, Carlos Ghanem, Ney Flores 

and César Sánchez for collaborating in the field experiments, Joanne Walker, for her assistance in the 

multivariate analyses, and Dr. Antonio Hall for his valuable comments. 
 

References 
 

Basford, K.E., and Cooper, M., 1998. Genotype x environment interactions and some considerations of their 

implications for wheat breeding in Australia. Aust. J. Agric. Res. 49: 53-174. 

Boyd, W.J.R., Goodchild, N.A., Waterhouse, W.K., and Singh, B.B., 1976. An analysis of climatic environments 

for plant-breeding purposes. Aust. J. Agric. Res. 27: 19-33. 

Chapman, S.C., Cooper, M., Butler, D., and Henzell, R., 2000. Genotype by environment interactions affecting 

grain sorghum. I. Characteristics that confound interpretation of hybrid yield. Aust. J. Agric. Res. 50: (in press). 

de la Vega, A.J., Chapman, S.C., and Hall, A.J., 2000. Genotype by environment interaction and indirect 

selection in sunflower. I. Multi-attribute two-mode pattern analysis. This volume. 

Fox, P.N., and Rosielle, A.A., 1982. Reference sets of genotypes and selection for yield in unpredictable 

environments. Crop Sci. 22: 1171-1175. 

Gabriel, K.R., 1971. The biplot-graphical display of matrices with applications to principal component analysis. 

Biometrika 58: 453-467. 

Gilmour, A.R., Thompson, R., and Cullis, B.R., 1995. Average information REML, an efficient algorithm for 

variance parameter estimation in linear fixed models. Biometrics 51: 1440-1450. 

Kroonenberg, P.M., 1997. Introduction to biplots for G×E tables. Research Report #51. Centre for Statistics. The 

University of Queensland, Brisbane, Qld 4072 Australia. 

Patterson, H.D., and Thompson, R., 1975. Maximum likelihood estimation of components of variance. In 

Proccedings of the 8th International Biometrics Conference. pp. 197-207. 

Woodruff, D.R., 1981. The prediction of plant growth and development using various environmental indices. I. 

Review. In D.E. Byth and D.E. Mungomery (Editors), Interpretation of Plant Response and Adaptation to 

Agricultural Environments. Queensland Branch, Australian Institute of Agricultural Science, pp. 145-157. 


